Advances in Predictive
Maintenance for a Railway
Scenario - Project Techlok

Technical Report TUD-CS-2015-1256
Version 1.0, October 31st 2015

Sebastian Kauschke
Knowledge Engineering Group/Telecooperation Group, Technische Universitat Darmstadt

Frederik Janssen
Knowledge Engineering Group/Telecooperation Group, Technische Universitat Darmstadt

Immanuel Schweizer
Telecooperation Group, Technische Universitat Darmstadt

Technical Report TUD-KE-2015-01
FG Knowledge Engineering, TU-Darmstadt

Telecooperation Report No. TR-16

The Technical Reports Series of the TK Research Division, TU-Darmstadt
ISSN 1864-0516
http://www.tk.informatik.tu-darmstadt.de/de/publications/

TECHNISCHE
UNIVERSITAT
DARMSTADT

Advances in Predictive Maintenance for a Railway Scenario - Project
Techlok

Sebastian Kauschke KAUSCHKE @KE.TU-DARMSTADT.DE
KNOWLEDGE ENGINEERING GROUP & TELECOOPERATION GROUP
TECHNISCHE UNIVERSITAT DARMSTADT, GERMANY

Frederik Janssen JANSSEN @KE.TU-DARMSTADT.DE
KNOWLEDGE ENGINEERING GROUP & TELECOOPERATION GROUP
TECHNISCHE UNIVERSITAT DARMSTADT, GERMANY

Immanuel Schweizer SCHWEIZER @CS.TU-DARMSTADT.DE
TELECOOPERATION GROUP
TECHNISCHE UNIVERSITAT DARMSTADT, GERMANY

Contents

1

2

Introduction

Data

2.1 Diagnostics Data L e e e
2.2 Failure Report Data - DES Database
2.3 Workshop Data - SAPISI Database
24 Quality iSSUES v v v e e e e e e e e e e e e
2.5 Validityofdata L
Failure Type selection

3.1 Failure type: Linienzugbeeinflussung oL
3.2 Failure type: Main Air Compressoro v v e
33 Predictiontask
3.4 Reduce unnecessary layovertask Lo
Creating Ground Truth

4.1 Diagnostic Dataonly e
42 Workshopdata e
43 FailureReportData e
4.4 Unnecessary workshop layover L oL
4.5 Missed and doublerepairs L.
Feature generation

5.1 Selecting useful diagnosticcodeso oL
5.2 Selecting useful system variables
5.3 Variabletypes
Labelling

6.1 Instance creation by aggregation
6.2 Quarantin€ area e e e e e e e e e e e e e
6.3 Unnecessary layoverarea et e e
6.4 Removalofinstances L e e e e e e
Experiments

7.1 The prediction experiment e e
7.2 The unnecessary layover experimento i e
7.3 Classifiers and further preprocessingo e
7.4 Results of initial experiments Lo
7.5 The sampling experimentl e e e e e e e e

7.6 Results of sampling experiment
Conclusion

Future Work

w

AN W

[e e lEN RN -

14
14
15
15
15

16
17
17
17
18
18
19

20

20

1. Introduction

Predictive maintenance (PM) scenarios usually evolve around big machinery. This is mainly caused by those
machines being both expensive and important for production processes of the company they are used in. A
successful predictive maintenance process for a machine can help with preventing failures, aid in planning
for resources and material, and reduce maintenance cost and production downtime. In order to benefit from
PM, a constant monitoring and recording of the machine status data is required.

Usually, historical data is used to train a model of either the standard behaviour of the machine, or - if
enough example cases have been recorded - a model of the deviant behaviour right before the failure. These
models are then used on live data to determine whether the machine is operating within standard parameters,
or - in the second case - if the operating characteristics are similar to the failure scenario. If the model is
trained correctly, it will give an alarm in due time. An overview of various PM methods is given in Peng et al.
(2010).

The DB Schenker Rail fechlok project is centered around the idea of system failure prediction on trains
based on their diagnostic data. The first steps towards a predictive model were made in 2014 based on the
diploma thesis of Sebastian Kauschke (Kauschke et al. (2014)). We leveraged the event-based structure of
the diagnostic codes to find patterns in the frequency of the events which indicate a failure scenario. With the
help of a supervised machine learning approach we built a classification model that analyses the diagnostic
data on a daily basis.

In this document we will show the advances of our research during the last twelve months. We worked
with more data sources — information regarding the workshop activities (SAP ISI Database) and failure
reports (DES database) — and a longer period of data recordings (two years). With this new information we
were able to more precisely determine when a specific kind of failure occurred, and therefore enhance the
ground truth for the historic data which we train the classification model upon. Furthermore, we integrated
the issue of Fehlzufiihrungen (Unnecessary layovers).

One of the main tasks was to differentiate unnecessary layovers compared to necessary ones. For this
task, recognizing them is vital for the training of the model. For the general prediction of impeding failures,
it is also advantageous to know unnecessary layovers, because they will affect the ground truth.

In order to achieve these tasks, we generate a descriptive snapshot of a train’s diagnostic data for each
day, a so called instance. These instances are multidimensional vectors and consist of so called features.
Each feature captures a certain aspect of one of the variables we observed on this train during that day. There
may be several hundred up to thousands of features in an instance. Given an instance for each train and day
created by the data records we obtained, we can use machine learning methods to learn a model. This model
will then be able to classify new instances.

In the experiments we executed during the process, we have not yet come up with results that can help
us resolve the abovementioned tasks. This may sound disappointing compared to the results of 2014, but
is caused by the increase of available information. We are looking into obtaining even more data sources
to further enhance our knowledgebase, as well as research different methods of building comprehensive and
functional models.

In the remainder of this document we will give a conclusive summary of the steps we have passed so far.
Starting with the description of the general task and the data-sources we were supplied with, we elaborate on
the basic problems that were researched, continue with the technical explanation of the methods and conclude
with experiments and results thereof. Finally, we give an outlook on planned future work.

2. Data

In this section, we will give a short introduction to the three information sources that were available, and
make assumptions about the quality and the completeness of the data. In comparison to our effort in 2014
(Kauschke et al. (2014)), were we relied solely on the diagnostic data, we were supplied with more data from
the DES and SAP ISI databases (see Fig. 1) in a wider period of two years (2013 and 2014).

This enabled us to gather more precise information and tackle a variety of new issues.

Diagnostic Data Workshop Data Failure Reports
» Events + Activity description * Failure description
» Warnings * Date * Date
* Measurements
» Not periodic

From SAP DB

From logfiles ggﬁ From SQL DB

Figure 1: Data sources

Given the combinations of these information sources, we will then filter the occurrences of two specific
failure scenarios and determine the exact date of the failures (cf. Sect. 4).

2.1 Diagnostics Data

The diagnostics data is recorded directly on the train in the form of a logfile. It records all events that happened
on the train, from the manual triggering of a switch by the train driver to warning and error messages issued
by the trains many systems.

We have access to data from the BR185 model range of trains, the BR185. This range was built in the
1990s. It has internal processing and logging installed, but the storage capacity is rather limited. Back
then, predictive maintenance was not anticipated, and the logging processes were not engineered for this
application. This becomes abundantly clear, when we consider the steps necessary to retrieve the logfiles
from the train. It has to be done manually by a mechanic, each time the train is in the workshop for scheduled
or irregular maintenance tasks.

In the two years we are using as historic data, around 21 Million data instances have been recorded on
400 trains.

2.1.1 DIAGNOSTIC CODES AND SYSTEM VARIABLES.

As already mentioned, the diagnostic data is stored in the form of a logfile. It consists of separate diagnostic
messages, each having a code to identify its type. When we refer to a diagnostic code, we usually mean a
message with a specific code. In total there are around 6.900 possible diagnostic codes. Each time a specific
system event occurs, a diagnostic message with the respective code is recorded.

A set of system variables is attached to each diagnostic code. Those are encoded as Strings (Fig. 2). The
variables are not monitored periodically, but only recorded when a diagnostic message occurs, since the whole
system is event based. Which variables are encoded depends on the diagnostic message that was recorded.
This implies that some variables will be recorded rarely and sometimes not for hours or days. Overall, there
are 2291 system variables available: simple booleans, numeric values like temperature or pressure and system
states of certain components.

The event-based structure complicates handling values as a time series. It requires some sort of binning
in order to achieve regularly spaced entities. In our case, a bin size of one day was used. Especially when
relying on attributes that involve temperature or pressure measurements it is impossible to create a complete
and fine-grained time-series of their values, because they appear too sparsely.

train code from to surroundings
185004 4003 1394442136 1394443101 D3BALlCO050000000000000BO00000000000ESO5S3
185004 ‘4000 1393940175 1394792657‘ 4FB11C0050000200000000BE0000000050190058B

“(
Contains diagnostic code with Contains system variables attached to
Duration info this code, including boolean, status or
numeric values

Status Features Numeric Features
* Total duration * Min/max values
* Average duration 0 Ave_rage value
* Frequency » Variance

Figure 2: Diagnostic data and attached values

There is another speciality about these diagnostic messages: They have two timestamps (Fig. 2), one
for when the code occurred first (from), and one for when it went away (o). This was originally designed
for status reporting messages that last a certain period. Most codes only occur once, so they do not have a
timespan, others can last up to days. For example there is code 8703 (Battery Voltage On) which is always
recorded when the train has been switched on, and lasts until the train is switched off again.

Because of the two entries from and to, there are usually two measurements of a variable for each diag-
nostic code entry. To handle these variables correctly, we separate them from the diagnostic messages and
use both values as separate measurements. This means, one diagnostic code contains two separate events, one
for the from timestamp, one for the 7o timestamp, and two sets of system variables, one for each timestamp.

2.2 Failure Report Data - DES Database

The Failure Report Data contains information when a failure has been reported by a train driver. In the
driving cabin there is the Multifunktionsanzeige (Multi-function-display: MFD), which shows warnings or
error messages. When a critical problem occurs, the information in conjunction with a problem description
is shown to the driver. If he is unable to solve the issue, he will call a hotline. The hotline operator will try to
help find an immediate solution. In the case of an unsolvable or safety-critical problem, the hotline operator
will schedule a maintenance slot for the train and organise the towing if necessary.

The information recorded in the DES database is the date of the hotline call, the stated reason of the caller,
and the information if the issue had an impact on the overall train schedule, i.e., the train was delayed more
than ten minutes.

The start and end date of the train being in the workshop for repairs will be added to this database after-
wards (manually), so there is no guarantee that it is complete and correct. In general, the textual description
given by the train driver and hotline operator are free text inputs and not consistent. The easiest possible way
of finding out instances of a failure type is to search these text descriptions for certain keywords.

In Fig. 3 a few exemplary entries from the database are shown. There are more fields than shown available
in the full dataset.

2.3 Workshop Data - SAP ISI Database

The Workshop Data consists of a complete list of maintenance activities on all the trains. Compared to the
Failure Report Data, it is gathered in a more controlled environment. Every maintenance activity is recorded

DATE BAUNR TEXT AUSF .BEGIN AUSF .ENDE
1388703600 185176 LZBPZB gestoert 1388617200 1388703600
1388617200 185149 LZB gestoert 1388271600 1388703600
1388617200 185216 LZB defekt 1388444400 1388703600

Figure 3: Example entries from DES database (selected attributes)

here, from the replacement of consumables up to the more complex repair activities. Every entry has date
information as well as an exact id for each activity predefined in a database. All activities are grouped by
a group code, as well as tagged with a price. The information, if a certain action was “corrective” or a
”scheduled replacement” is also available.

The correct tracking of the maintenance records is necessary for invoices, so it is plausible to assume that
these are handled more carefully than the failure report data. However, they are manually entered into the
system and it can not be guaranteed that they resemble the exact activities that have been applied to the train.

2.4 Quality issues

All of the three datasets have two issues in common: (1) they may not be complete (missing entries, descrip-
tions or dates) or (2) are filled with false values (wrong dates, typos that make it hard to find a keyword).
Whether this is caused by human error, negligence or processes that do not cover enough details is not im-
portant, but rather how we deal with these issues.

They may cause problems during the whole process which we may or may not realize at some point. A
possible result could be the degradation of results, or — almost worse — lead to very good looking results
that then cannot be re-created in practice. In any case, we have to look out for these inconsistencies and
question their possible impact in each following step.

2.5 Validity of data

In order to make computations on the given data easier, the concept of validity is introduced. If an instance is
valid, it means that this instance can be used to train a model upon or validate a given model.
Validity is defined as follows: For each train, for each day, an instance is considered valid, if

* (i) it contains diagnostic data records
* (ii) the train was not in the workshop
e (iii) the train has driven more than 10 kilometres

If this is not the case, the train might have been in the workshop or was not in use. Especially in the workshops,
the train emits plenty of diagnostic codes, probably because of the maintenance crew running diagnostic tools
on the train. For the further steps of labelling etc, we only work with valid days.

3. Failure Type selection

In order to demonstrate the functionality of our approach we have selected two major failure types, which we
chose together with domain experts based on their frequency or how urgently they need to be addressed:

e The Linienzugbeeinflussung (LZB) failure

* The Main air compressor (Hauptluftpresser: HLP) failure

For both problems the classic prediction task — determining when the component will fail — is very
interesting in order to reduce cost and follow-up problems caused by the failure.

For the LZB problem, the additional and very relevant task of recognizing unnecessary layovers (Fehl-
zufiihrungen) is of high priority. About one third of reported LZB failures turn out to be false alarms :
the train driver overreacted on the displayed error messages. If we can decide based upon the status of the
machine, if his concerns are justifiable, this could reduce the amount of unnecessary layovers and therefore
cost.

So our target is to predict the failure of two specific types in a complex system containing many compo-
nents. Therefore we will build a predictive model using a supervised learning approach on historical data,
and apply it to new(er) data.

With the given datasets described in Sect. 2, we are going to extract the exact points in time when the
failures have happened, so that we can put labels on the instances created from the historical data. We
will create features that are descriptive and discriminative for the specific failure, and use them to build one
instance per day and train.

We will have to face the following challenges:

1. Deal with large amount of diagnostic data that has unusual properties, i.e., inhomogeneous data distri-
bution!.

2. Extract a valid ground truth from three given datasets to find out exactly when the failures happened
by searching for indications for that type of failure and recognizing unnecessary layovers.

3. Recognize errors, incompleteness and imprecision in the data and derive methods to deal with them.
4. Create meaningful features that emphasize the underlying effects that indicate an upcoming failure.

5. Set up a labelling process for time-series data that enables classifiers to anticipate impending failures
early enough to allow for corrective reactions.

6. Define an evaluation procedure that maximises the outcome with respect to given criteria in order to
achieve optimal prediction.

For the prediction process as described, it is important to have enough example cases in the historical
data. In the remainder of this section we will elaborate on the failure types and tasks that were selected.

3.1 Failure type: Linienzugbeeinflussung

Linienzugbeeinflussung (LZB) — continuous train influencing system — is a centralised system to propagate
driving information to the conductor, including speed limits, stopping information and other signals. It is also
a security system which issues emergency stops if necessary. Originally, it was invented in the 1960s as an
addition to the — back then — state of the art influencing system, to allow for train speeds of up to 200 km/h.

Failure of the LZB system is rather common. With the help of the ISI Database we could detect over 900
repairs in the selected period of two years, making it one of the most repaired systems. Although failure of
the LZB is not safety critical, it will slow down the train and hence create follow-up problems.

Due to the LZB being highly connected and problems with it being thoroughly logged as warnings in the
diagnostic data, as well as the large amount of occurrences, this problem was chosen for evaluation.

3.2 Failure type: Main Air Compressor

The main air compressor or Hauptluftpresser (HLP) is used to create pressurized air for various applications,
including braking. In the given datasets there was a high number of HLP problems recorded in the years 2013
and 2014. The HLP is used only occasionally to fill up an air tank to 10 bar every time the tank’s pressure
sinks below 8.5 bar. Those events are recorded in the diagnostic data. Furthermore, the actual pressure of
the tank is recorded as a numeric value in the status variables. The intention of using this problem case is

1. Most often failures cases of machines are extremely rare. However, extracting instances that describe the regular operation of the
machine comes more or less for free. In predictive maintenance, we have to deal with a very skewed class distribution.

that the pressure measurement and frequency of refilling the tank will give substantial information on the
deterioration of the compressor.

3.3 Prediction task

The main task to apply to both given problems is the prediction task. The goal of this task is to predict, when
the part is heading towards a failure, in order to be able to fix or replace it before the failure occurs. For the
prediction task, it is both important to have a reliable model in terms of prediction accuracy — meaning little
false alarms and plenty of true positives — as well as to be able to predict enough days in advance to react

properly.

3.4 Reduce unnecessary layover task

Especially with the LZB problem, there is another aspect to the situation. A significant amount of reported
LZB problems that lead to a workshop layover are then deemed unnecessary. That means, a thorough tech-
nical check of the component reveals no malfunction and therefore nothing is repaired. In reality, around
30 % of all LZB related layovers are cancelled, which makes it one of the priorities to reduce the amount of
unnecessary layovers.

4. Creating Ground Truth

A necessity in order to address the problems and tasks is to reconstruct the ground truth, to be able to create
good labels for a classification process. This means determining when a failure has happened exactly. In this
section, we will show how much information is contained in each of the datasets described in Sect. 2 w.r.t. the
ground truth, and combine them in such a way that the optimal result based on our current state of knowledge
is received.

The information we need to build a model with a supervised learning approach are:

* the day a failure occurred,

¢ information on when the train was in the workshop afterwards,
* alist of double repairs of the same part within a few days, and
* alist of layovers that were deemed unnecessary.

Without this information being correct, we cannot label the daily instances for each train correctly and the
model will be corrupted. The process is as shown in Fig. 4.

4.1 Diagnostic Data only

When we look at the information we can retrieve from the diagnostic data, it seems reasonable to think that
we can extract the point in time when the train driver received the precise error message that led him to report
the failure.

In reality, however, the messages displayed on the MFD cannot be retrieved from the diagnostic data.
They are generated from it with a certain internal programming logic. Unfortunately, the combinations of
codes needed to display a certain message is not accessible, therefore it remains unknown how this is done.
Given the original documentation, we would be able to identify the causes, which could help find the exact
reasons the train driver called the hotline, and also evaluate which of those messages occur before real failures
and which before unnecessary layovers (cf. Sect. 4.4).

When we take all diagnostic messages that explicitly state a malfunction of the main compressor into
account, a result as depicted in Fig. 5 can be achieved, each square indicating one failure day. Hence, for the
train in our example a total of six failure indications are present.

Failure Reports filter + Date of failure

(Descriptions of failures) failures * Start/end of repairs
Information won:
» Exact date
search activities =+ Time in workshop
in that timeframe + Exact list of repairs

Workshop Data If repaired, then cause = real failure
(Maintenance activities) If not repaired, then unnecessary layover.

Figure 4: Create Ground Truth

— o o o o oo —

Failure

| | |
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
Day (of 2 year period)

Figure 5: Discovered failures for one exemplary train using only diagnostics data

Because the underlying reasons that caused this messages are unclear, we proceeded by taking further
knowledge into account and refine these findings in subsequent steps.

4.2 Workshop data

Using the workshop data, we can determine the point in time when a certain part has been replaced, and if
the replacement was corrective or scheduled (mandatory). This greatly improved the identification of the true
failures. Still, depending on how maintenance is handled, it only gives us a rough estimate of the point in
time the failure actually took place. Note that maintenance procedures are not always carried out directly
as the failure happens. Some types of failures require the train to be sent to a certain workshop, as not all
workshops are equipped to handle every repair procedure. This may cause some days or even weeks in delay
before the train finally is repaired. Therefore, the workshop date is not precise enough for a valid labelling.

A comparison of the extracted failure points can be seen in Fig. 6 depicted as red stars, showing a certain
overlap with the findings from Fig. 5, but also completely unrelated entries. On average, red stars are 24 days
away from blue boxes. If we only take pairs that are less than 21 days apart into account, the average distance
is 6.5 days. But those are only 6 out of 10 instances, which leaves room for improvement and consequently
leads us to the next step.

4.3 Failure Report Data

Utilizing failure report data, we are able to increase our understanding of when the actual breakdown has
happened. The date of the reporting is noted, and, with high confidence, it also states the correct day. We
encountered some irregularities, for example the reporting date being behind the date the train was then
brought into the workshop. We can still use this information to narrow down the exact day of the failure,
but cannot narrow it down to anything more fine grained than a day, because the precision of the timestamp
that is recorded in the reporting system is not high enough. Therefore, we decided to take one day as the

T T T T T T
[~ o *x X% o O% & 00 —

| | | | | | | | | | | | | |
OO 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Day (of 2 year period)

Failure

Figure 6: Discovered failures using workshop data (red) compared to Fig. 5 (blue)

T T T T
1— o Ok Ookx O * o o —

Failure

| | | | | | | | | | |
500 510 520 530 540 550 560 570 580 590 600
Day (of 2 year period)

Figure 7: Discovered failures using failure report data (black) compared to Figs. 5 (blue) and 6 (red)

smallest unit a prediction can be done for. Since we expect to predict failures weeks in advance, this is not
a problem. However, when failures have to be predicted that evolve within very short periods of time, the
proposed method is not suitable any more.

In Fig. 7 we now look at a smaller part of the timeline (compared to Fig. 5 and Fig. 6) from day 500 to
620 (for better visibility). It is obvious that the failure report dates (black circles) are related to the workshop
dates (red star), but not always to the diagnostic data (blue squares).

Therefore, we can conclude that only the combination of a failure report and a following repair is truly
indicative of a failure. The diagnostic messages seem to indicate failures, but, surprisingly, after most of
them the train is not affected negatively. Comparing the failure report dates with the repair dates an average
distance of 1.6 days is yielded when events that are more than 21 days apart are discarded.

4.4 Unnecessary workshop layover

Unnecessary workshop layovers mostly happen because of the train drivers concern with safety. As we were
told by domain experts, the programming logic that drives the MFDs error and warning messages is usually
very sensitive, therefore generating a certain amount of false positives.

This may cause the train driver to trigger unnecessary maintenance actions. In the workshop the mechan-
ics will then check the system, conclude that there is no failure and cancel the scheduled replacement. With
the workshop data and the failure report data combined, we are able to differentiate the necessary from the
unnecessary activities and exclude them from the pool of failures. This emphasizes the strong need for com-
bining the different data sources by using expert knowledge, as only then high-quality datasets can finally be
built. In Fig. 8 the detected unnecessary layovers in comparison to the correct repairs are shown.

4.5 Missed and double repairs

Related to the unnecessary workshop activities are the missed repairs. Sometimes the train might arrive in
the workshop with a given failure to check, and the repair crew may not be able to reproduce the symptoms,
hence declaring this an unnecessary activity. A few days later the train might get submitted for the same
reason again, and often only then the crew will actually repair or replace the component.

This effect has two implications, the first being that the time between those two layovers should not be
used to train the model, because it may contain data where it is not certain if the failure is near or not. Second,
it is also not clear whether the replacement that was made in the second attempt was actually well reasoned, or
the maintenance crew decided to simply replace the part in order to eliminate the interference from happening

10

Failure

| | | | | | | | | | | | |
OO 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Day (of 2 year period)

Figure 8: Discovered failures (green) and unnecessary layovers (orange)
Examplary diagnostic code:

BAUNR CODE FROM TO
185004 20474 1360001005 1360050266

Corresponding system variables (excerpt):

VARIABLE TYPE SYSTEM FROM_VALUE TO_VALUE
Laufleistung LONG ASGO01 1701416 0
Fahrtrichtung Lok WERT ASGO1 65 2
System BDEZ ASGO1 80 0
Traktion WERT ASG01 4 0
Geschwindigkeit UuuU ASGOl1 O 0
Freigabe Stromrichter BOOL ASGOl true false
Zug—/Bremskraftsollw. BBBB ASGO1 O 0

Bef Stromrichter-Betr WERT ASG01 4 0
Zug-/Bremskraftistw. BBBB ASGO1 O 0
Stromrichter taktet WERT ASG01 4 0
Zug—-/Bremskr—-Reduz (KSR) UUUU ASGOl O 0
Fahrmotor-Auferregung BOOL ASGO1 false false
Taktart WR WERT ASGO1 128 128
Fahrdrahtspannung UU.U ASGO1 16.1 0.9

Figure 9: Examplary diagnostic code and corresponding system variables

again. These events are not documented as such, and we can only avoid negative influence on the training by
removing the instances from the training set completely.

In the case of double repairs, we treat layovers caused by the same reasons that appear in a less than two
weeks time as a single one, therefore assuming that the reasons to bring the train in were correct in the first
place. Unfortunately, we can not prove if this assumption is always correct, but a discussion with the domain
experts assured us that it is usually the case. This information will help us in the labelling process such as we
can remove those instances in between two repairs from the training set for the model.

5. Feature generation

In this section we will discuss the process of selecting diagnostic codes to create features. In the steps of
importing the original datafiles into an SQL database, the original structure of the data-log — to each event a
small set of system variables, the so called surroundings, is attached — was separated into two independent
data tables (Fig. 9). This is an advantage in creating useful features, because we can choose which values are
used from both parts of the data separately.

11

In the following sections we will discuss how and why we selected a certain subset of diagnostic codes
and system variables. The combination of both of them will then be turned into instances (one for each train
for each day). The challenge here is, to select the features that contain the information we need, but also to
keep the amount of features as low as possible, because otherwise our generated set of instances will become
very large and problems may arise when trying to learn a model on them (RAM issues, long training times,
etc.). We train the models on the TU Darmstadt server cluster?, which offers more than 1150 nodes (Oct.
2015) for parallel computing. We only need single-core nodes for each model-training process, but we have
500 parametrizations for this process, so we can run a minimum of 20 processes in parallel. If we run more,
the database becomes a bottleneck.

5.1 Selecting useful diagnostic codes

In order to select a good subset of diagnostic codes to turn into features, the following aspects have to be
accounted for:

* The chosen subset has to contain the necessary information

* The chosen subset should be as small as possible, which will require less space and processing re-
sources.

5.1.1 NAIVE APPROACH

The naive approach to this problem is: Use all available attributes and — by sheer processing power — de-
termine which is the optimal subset of these attributes. While this would be possible for the diagnostic codes
alone (one diagnostic code is turned into three attributes/features), including the system variables (where one
status variable may turn into hundreds of resulting features) would make this very hard to calculate, even with
the TU Darmstadt server cluster.

A more feasible approach would incorporate pre-filtering of the diagnostic codes with external knowledge
or based on other metrics.

5.1.2 SELECTION BY UNIVARIATE CORRELATION ANALYSIS

One of the possibilites to achieve a pre-filtering, is correlation analysis. In this case, we analyzed the corre-
lation of each attribute with the target class (failure). Unfortunately, the result of this analysis showed that
the most positive or negative correlated attributes are just diagnostic messages that appear very frequently
anyway. Most of them cover completely unrelated messages, for example “Fiithrerraum 1 ein” (Operating
Stand 1 enabled). Therefore we can only partially use the results of this correlation analysis: We assure that
the correlated messages that don’t contain trivialities are contained in our final selection set.

5.1.3 SELECTION BY SYSTEM

The final approach to diagnostic code selection takes a coarse pre-selection based on the system and subsys-
tem. For example, the LZB failure is coupled to the LZB system and the diagnostic codes which belong to
this system. Nevertheless, diagnostic messages from the ZSG-system could also be relevant, etc. In order
to make an elaborate choice on which systems and subsystems might be relevant, an expert interview was
conducted.
The result was as follows: Relevant systems include LZB and ZSG.

Relevant subsystems are EVC, ATP, IDU, LZB, LZBE, TRAN, GSTM, STMh and STM. Those systems contain
a total of 2132 different types of diagnostic messages, which narrows down the initial selection to about one
third (from 6909). Afterwards, this selection can be further reduced by removing diagnostic codes that never
occur, which reduces this selection to 693 diagnostic codes. All the codes from the previous correlation
analysis are contained in this selection.

2. Lichtenberg-Hochleistungsrechner http://www.hhlr.tu-darmstadt.de/hhlr/

12

5.2 Selecting useful system variables

In addition to the diagnostic codes, we select useful system variables to be incorporated in our featureset
and hence the daily instances. The system variables contain system states and analogue measurements (e.g.
temperatures and pressure values) and can therefore be helpful of describing the underlying physical aspects
of a failure scenario.

The selection of useful system variables — especially the system states — is nontrivial as well. We chose
a hand-selected number of variables for each of the problems. Unfortunately, analysis of the system variables
showed that many of the recorded values are always ~’0”, so we do not use them and this reduces the amount
of selected variables to a few. In the case of the LZB failure, the observed variables where

* Sensor-Status
* Interne ATP-Meldung
¢ Interne LZB-Meldung

All of these variables are status-variables, meaning they do not contain specific measurements, but only
numbers which represent a state of the system.

5.3 Variable types

In this section we describe the three basic types that system variables can have.

5.3.1 STATUS VARIABLES AND DIAGNOSTIC CODES

Status variables are usually filled with a hexadecimal number of a system state. Since there is no coherent
documentation on the variables and the possible states of them, we had to do a complete search for all
occurrences of each system variable in order to determine all the possible states. For some variables, this can
be several hundred. Boolean variables — having the states true and false — are treated as state variables.

The diagnostic codes themselves, since they come with a duration information, can also be treated
as a state. The features generated thereof are then equally processed and result in three values for each
code/variable:

1. Total duration of code/status: All durations summed up for the whole day
2. Frequency: How often one diagnostic code/status occurs during one day
3. Average duration: Total duration divided by the frequency

4. Tf-idf: Term frequency inverse document frequency. This measure was originally used in the domain
of information retrieval (cf. Sparck Jones (1972)) as a relevance measure for terms in a corpus of
documents. It combines the frequency and the inverse document frequency, such that terms (in our
case: diagnostic codes) that appear rarely in few documents (days) can be discriminated from regular
terms that appear often.

These attributes cover the primary properties of the appearance of diagnostic codes and states. Other
statistical values might be useful, e.g., variance of the average duration. It is planned to conduct further
experiments including other statistics in the future, however, we are confident that these statistics have the
highest impact on the significance of the features.

5.3.2 NUMERIC VARIABLES

Numeric values occur in a wide range of applications, for example the measurement of temperature values.
For these variables we use standard statistical measures:

13

ve{0, 1,2, 4,8, 16}

Time>

)
v
<
3
wv
=

|
I

Figure 10: Instance creation: aggregating measurements of the previous v days into instance

1. Average: Arithmetic mean of all recorded values in one day
2. Maximum: Maximum recorded value in one day

3. Minimum: Minimum recorded value in one day

4. Variance: Variance of all recorded values in one day

These attributes cover important properties of numerical values, more complex ones may be evaluated in later
experiments.

5.3.3 TIME NORMALIZATION

Since a train does not have the same runtime each day, we scale the time-based values that are absolute
(duration, occurrences) to the total uptime per day, in order to increase comparability between days. As a
result we achieve frequency (occurrences per hour) as well as average duration per hour.

The combined selection of diagnostic codes and system variables described in this section and the at-
tributes derived thereof result in a total of 2633 features per instance.

6. Labelling

In this section we will describe the labelling process with emphasis on the preprocessing steps.

In order to be able to train a model on the daily instances we created so far, we need to put a label to each
instance that we want to train with. To do so, we discovered the ground truth in Sect. 4 and put together a
useful set of features for our instances in Sect. 5. We will describe why large amounts of the data were not
used for training and evaluation because of inconsistencies and information gaps.

6.1 Instance creation by aggregation

As proposed in related literature (Létourneau et al. (2005); Sipos et al.; Zaluski et al. (2011)), we will use
a sliding window approach to label the instances (cf. Fig. 11). To calculate the instances, we will not only
create a feature-vector A, for a given day ¢, but instead calculate the trend leading towards this point in time.
For this, we use linear regression with the window size v for each day ¢ such as to create a vector I; , =
linreg(At—y, ..., At—1, At), in order to represent the behaviour of the system in the last v days. The gradient
of the linear regression is then used as the attribute.
Each of those vectors represents one instance, as can be seen in Fig. 10.
The labels are then assigned as follows:

Step 1: Label all instances as warning = false
Step 2: For each failure on train B and on day S, label the instances Bg_,,...Bg as warning = true

The value w represents the “warning epoch”. The optimal value of w will be determined experimentally,
and depends on the specific type of failure. The optimal value for v will also be determined experimentally.
An example of labelling can be seen in Fig. 11.

14

lorma Warning Wiedsnee Quarantine {Grmal

Failure

Time>

‘|‘
Not used for training

Figure 11: Label assignment

6.2 Quarantine area

Because of the nature of the sliding window, we need to assure that — right after a part has been repaired —
we will not immediately create instances with warning = false.
For example, given a window size of v = 8 and a failure/repair on day F":
if we create I(r 2) g the window will date back to 6 days before the failure and incorporate the measurements
from those days. The calculated features would be influenced by the behaviour before the maintenance.
Therefore we introduce the quarantine interval, also of length v. All instances in this interval may be
affected by the failure and have to be treated accordingly, in our case removed. The quarantine interval
prevents instances that are influenced by the effects of the failure, but labelled as warning = false (depicted
in Fig. 11).

6.3 Unnecessary layover area

In Sect. 4.4 we elaborated on how we detect unnecessary layovers. Apparently these result from values in
the diagnostics system which caused it to issue a warning on the MFD. Thus, some sort of non-standard
behaviour has been detected. Compared to our ground truth we can state that — although abnormal — the
records do not correlate with the failure we are trying to detect. We do not want these to affect the training of
the classifiers, so we create a buffer area around those occurrences. The buffer area affects all instances from
Ii_y... Iy, The instances inside this area will not be used for training.

6.4 Removal of instances

As stated before, the diagnostic data we built the instances upon is not recorded continuously, but on an
event-triggered basis. For example, data is not recorded when the train is switched off. To address this issue,
the concept of validity was introduced. If no data was recorded on a given day, this day is regarded as invalid.
The same applies, when no mileage was recorded on a day. It can happen that a train is switched on and
records data, even when it does not actually drive. Most often this happens in situations where the train is
moved to another rail, hence, we consider a mileage of less than 10 km per day as invalid, since driving less
than 10 km definitely is no cargo delivery.

The last attribute that has an influence on the validity is the information, if a train was in the workshop at
a given day. In workshop layovers, problem detection gear is usually attached and some diagnostic programs
are executed, causing the train to emit more diagnostic messages than usual. In order to keep this artificially
created information from influencing the process, workshop days are also handled as invalid.

In Fig. 12 the sequence of removal steps is displayed based on an example from the main air compressor
problem. In the first part of the figure, the ground-truth (GT) resulting from the process of Sect. 4 is shown:

* The "correct” line depicts events of correctly reported compressor failures. The compressor was tested
and repaired.

15

correct
€rror
\ \ \ \ \ \

—waia] L] WUWWMMM Mﬂ MHHMMHMW il

W””W

I ‘—unnecessary layox[;)uffer } m m ﬂ

| [0

4 —— remaining instances } M W
| |

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Day (of 2 year period)

GT

St.1

St.3

St
O = O HF O HF O = O =

Result

Figure 12: Stepwise removal of invalid and unreliable values

[T T
—— warning label F F Fr
I]

_— W (—WI—N_U.H[H_“HHI-HH |
_‘ remaining instal‘lces ‘
|

Result Label
o = O —

J |
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Day (of 2 year period)

Figure 13: Remaining instances compared to positive labels

* The “error” line shows unnecessarily reported failures. The test was negative and the compressor was
not repaired.

During a period of 2 years, we calculate the conditions for an instance for each day. In steps 1-3 those
criteria are displayed, the status being true (1) when the condition applies.

The first step of the removal process eliminates all the invalid instances (St.1). In the second step, we
remove all instances that appear in the quarantine period defined in Sect. 6.2. Finally, we remove data in
the unnecessary layover buffer area from Sect. 6.3 in step 3. This is done in order to eliminate all negative
training influences those instances might have.

At the end of this process we are left with a significantly smaller number of instances, as can be seen in
the Result column of Fig. 12. In comparison to the actual labels we assign to those instances, we can see
in Fig. 13 that a significant number of the “warning=true” instances were removed during the process. The
quality of those remaining instances with respect to our labelling is highly increased when employing these
steps, since potentially problematic, useless or erroneous instances are completely removed.

7. Experiments

For the two types of tasks — prediction and unnecessary layover reduction — different experiments where
conducted. They are essentially based on the same feature extraction and instance creation process, although
the labelling might be slightly different depending on the task.

16

7.1 The prediction experiment

In the prediction task, the goal is to be able to classify instances from the warning period. For example, if
we have learned a classifier with a 7-day warning period, we should get — in the real case — the first signs
of warnings around 7 days before the failure. Sometimes we might get singular false warnings, but when
warnings appear on consecutive days, this would indicate an impeding failure. For this task, the labelling as
shown in Fig. 11 is used.

The complete dataset with 400 trains and the diagnostic data for 2013 and 2014 is processed as described.
Unfortunately, conventional n-fold cross validation is not suitable for time-series data. In order to be able to
achieve realistic results, it is important that the training and test-sets are independent in one of two ways:

* Time — a strict separation in time is chosen, for example 18 months of training data and the remaining
6 months as test data.

* Trains — as the trains are independent machines, we can separate our train/test dataset by trains. This
means, we put the data from 90 % of trains into the training set, and keep the remaining 10 % as test
data. We repeat this 10 times, so that each train is in the training set 9 times, and in the test set once.

We chose the second variant (split by trains) for our evaluation. It has the added benefit, that it could
prove that failure behaviour is comparable between trains. With 6 different parameters for the warning period
and 5 for the aggregation period, 30 combinations of each dataset were created.

The resulting datasets contain a very skewed class distribution, with more than 99 % of instances being
labelled normal, and only few being labelled warning.

7.2 The unnecessary layover experiment

In this experiment, we want to know whether a classifier can differentiate between instances that belong to
a layover with a repair (normal), or to an unnecessary layover. Only the instances of the day right before
the failure are used for this experiment, the normal ones labelled normal and the unnecessary ones labelled
as fzfg (Fehlzufiihrung). Since these instances represent one independent failure case each, we can rely on
conventional 10-Fold cross validation for the evaluation.

Since about 30 % of failures were false warnings to begin with, the class distribution in this experiment
is around 30 / 70 and not severely skewed.

7.3 Classifiers and further preprocessing

We used the WEKA Tools embedded in a java program to run the evaluation for both setups on. The following
classifiers were chosen:

* JRip

* RandomForest

* BayesNet

As attribute selection methods, the following were chosen:
* CFSSubset

* ReliefF

* No attribute selection

This results in a total of 6 combinations of evaluating the datasets. The classifiers and attribute selec-
tion methods presented here were pre-selected based on the results. This way we have an ensemble tree
method (RandomForest), a rule learner (JRip) and a bayesian classifier. We did not include a Support-Vector-
Machine, because it would have needed significant performance tuning to be competitive, which can be a

17

demanding task on its own.
The chosen classifiers are robust against parametrisation mistakes and work well with the standard configu-
ration provided by WEKA (which we used).

7.4 Results of initial experiments

Unfortunately, with either parametrization, none of the classifiers were able to predict the upcoming fail-
ures properly (prediction experiment). Also, distinction between correct and wrong failures is not possible
(unnecessary layover experiment).

The instances were just too similar to each other to be distinguished.

7.5 The sampling experiment

As a further experiment investigating the shortcomings of our methodology, we tried some classification tasks
which should be quite trivial, if the instances we created contain the information that is crucial to differentiate
the failures from the normal operation. This experiment is based on the LZB Problem domain and the failures
of the LZB System.

7.5.1 EXPERIMENT DESCRIPTION

We sample a subset of instances as follows:

* We choose all real LZB failures that resulted in a repair/exchange of the system. This results in 163
failure incidents.

* For each failure that was found, we take one positive (warning) instance from the day before the failure
took place.

* We then select one randomly chosen, negative (normal) instance for each failure instance.

* We ensure that the negative instances are not influenced by the failures by creating a buffering area (see
Fig.14) from which no instances are chosen (40 days before and after each failure).

With this setup, we achieve big diversity between the normal and failure instances. If a real deterioration
process is indicated by the data, the possibility for distinction should be increased by choosing the instances
like this.

Furthermore we achieve evenly distributed classes, which is advantageous for learners. Especially with
problems where one class is the minority by a large margin, some learners will not be able to learn the
structure of the underlying class.

In order to avoid random anomalies in our result, we will repeat the sampling 20 times. In each of these
iterations the positive instances will be equal, but the negative instances will be random. To put this in
perspective, we have a total of 163 positive instances, and will chose 163 negative instances from a total of
approximately 150000 available.

7.5.2 PARAMETRISATION

The experiment setup regarding the classifiers and preprocessing is equal to the setup described in Sect.7.3.
For the instance creation phase, we used an aggregation window sizes of v = {1,2,4} to create the
instances as described in Sect.6.1.
For evaluation we used 5-fold Cross-Validation on each of the 20 sampling iterations. We can use cross-
validation in this case, because the instances are independent of each other, unlike in the original prediction
experiment.

18

Buffer

Figure 14: Buffered Sampling Experiment
Window Classifier + Attr. Selection AUC Precision(w) Recall(w) Accuracy

v=1 RandomForest + ReliefF 0.864 0.813 0.749 78.477
v=4 RandomForest + ReliefF 0.86 0.81 0.735 77.96

v=2 RandomForest + ReliefF 0.855 0.815 0.735 78.024
v=4 RandomForest + CESSubset 0.791 0.754 0.668 72.268
v=1 RandomForest 0.788 0.731 0.682 70.944
v=4 RandomForest 0.784 0.731 0.667 70.207
v=2 RandomForest 0.783 0.727 0.676 70.481
v=2 RandomForest + CFSSubset 0.771 0.732 0.653 70.466
v=1 RandomForest + CFSSubset 0.77 0.723 0.673 70.262
v=1 JRip + ReliefF 0.682 0.678 0.649 66.31

v=4 JRip + CFSSubset 0.667 0.671 0.643 65.126
v=2 JRip + ReliefF 0.666 0.674 0.617 64.824
v=4 BayesNet + CESSubset 0.656 0.647 0.574 61.686
v=2 BayesNet + CFSSubset 0.651 0.639 0.541 60.748
v=1 JRip + CFSSubset 0.649 0.639 0.644 63.423
v=2 BayesNet 0.647 0.64 0.512 60.114
v=2 JRip + CFSSubset 0.647 0.653 0.628 63.691
v=4 BayesNet 0.647 0.637 0.553 60.388
v=4 JRip 0.646 0.645 0.641 63.385
v=2 JRip 0.645 0.642 0.641 62.974

(rest of results omitted)

Table 1: Experiment Results ordered by AUC

7.6 Results of sampling experiment

Time>

When looking at the results of this experiment in Tab.1 we will focus especially on the recall and precision
rates of the warning class. The results are ordered by Area under the ROC-Curve value, which is a combined
measure that takes the true positives and false positives into account. We have limited the output to the top
20 results, as the remaining are of no specific interest.

As we can see in Tab.1, the RandomForest classifier generally performs high for this type of problem,
regardless of the chosen attribute selection and window size. It achieves a precision of over 81.3 % and recalls
more than 74 % of the instances.
The Ripper and Bayesian Network implementations of WEKA also perform well, although significantly
below the RandomForest. In general, varying the window size has no significant impact. These results may
vary when choosing substantially larger window sizes.

19

Although the results seem promising, there is one aspect we have to keep in mind: These results were
conducted based on equally spread class distribution via 5-fold Cross Validation, meaning the classifier was
trained and evaluated on this even distribution.

In a real scenario, we would not have equally distributed data which we apply the classification upon. We
have to do further experiments in order to be able to estimate the performance on a real dataset.

8. Conclusion

In this report we have described various processes, which will help us solve the problems of failure prediction
and reduction of unnecessary layovers:

* We have established a process to determine the ground truth for different failure types in order to be
able to turn it into a supervised learning problem, which deals with unreliable data and covers aspects
such as unnecessary layovers or double repairs.

* We have derived useful features from the diagnostic data that is recorded in the trains.

* We have deducted a labelling schema in order to be able to solve the tasks given by the problems at
hand.

* We have performed preliminary experiments.

Although the results of the preliminary experiments seem promising, we can not confidently state that the
methods as described will prove sufficient for the given problem types. In order to do so, we must further
investigate the behaviour of our datasets given a more realistic situation, especially with respect to skewed
class distributions and the effects they have on learning algorithms. This has to be analysed carefully to
establish a solid and working method.

9. Future Work

For future work, we will look into the following topics:

* Investigate the skewed class distribution issue and develop an approach that helps classifiers to be
trained and evaluated on such data.

* Analyse the instances of the sampling experiment, e.g. by clustering or statistical tools
» Switch from instances that cover days to instances that cover tours.
* Apply a different method to handling the warning period, for example a multi-instance approach.

* Use more fine-grained temporal binning. The original assumption of 1 complete day per instance might
be too coarse.

* Gather more precise information to enhance ground truth. With the incorporation of the CDIF database,
we might be able to improve the knowledgebase.

20

List of Figures

1 Datasources oo e e e e e 4
2 Diagnostic data and attached values 5
3 Example entries from DES database (selected attributes) 6
4 Create Ground Truth e 9
5 Discovered failures for one exemplary train using only diagnosticsdata 9
6 Discovered failures using workshop data (red) compared to Fig. 5 (blue) 10
7 Discovered failures using failure report data (black) compared to Figs. 5 (blue) and 6 (red) . 10
8 Discovered failures (green) and unnecessary layovers (orange) 11
9 Examplary diagnostic code and corresponding system variables 11
10 Instance creation: aggregating measurements of the previous v days into instance I 14
11 Labelassignment e 15
12 Stepwise removal of invalid and unreliable values 16
13 Remaining instances compared to positive labelso 16
14 Buffered Sampling Experiment L 19
List of Tables
1 Experiment Results ordered by AUC 19
References

Sebastian Kauschke, Immanuel Schweizer, Michael Fiebrig, and Frederik Janssen. Learning to predict com-
ponent failures in trains. In Thomas Seidl, Marwan Hassani, and Christian Beecks, editors, Proceedings of
the 16th LWA Workshops: KDML, IR and FGWM, pages 71-82, Aachen, Germany, 2014. CEUR Workshop
Proceedings. URL http://ceur-ws.org/Vol-1226/paperl3.pdf. urn:nbn:de:0074-1226-4.

Silvain Létourneau, Chunsheng Yang, Chris Drummond, Elizabeth Scarlett, Julio Valdes, and Marvin Za-
luski. A domain independent data mining methodology for prognostics. In Essential technologies for
successful prognostics : proceedings of the 59th Meeting of the Society for Machinery Failure Prevention
Technology, 2005.

Ying Peng, Ming Dong, and Minglian Zuo. Current status of machine prognostics in condition-based main-
tenance: a review. The International Journal of Advanced Manufacturing Technology, 50(1-4):297-313,
2010. ISSN 0268-3768. doi: 10.1007/s00170-009-2482-0. URL http://dx.doi.org/10.1007/
s00170-009-2482-0.

Ruben Sipos, Dmitriy Fradkin, Fabian Moerchen, and Zhuang Wang. Log-based predictive maintenance. In
KDD 14 Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and
data mining.

Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval. Journal of
documentation, 28(1):11-21, 1972.

Marvin Zaluski, Silvain Létourneau, Jeff Bird, and Chunsheng Yang. Developing data mining-based prog-
nostic models for cf-18 aircraft. In Journal of Engineering for Gas Turbines and Power, volume 133,
2011.

21

