ID  - pm:DS-16
T1  - Predicting Cargo Train Failures: A Machine Learning Approach for a Lightweight Prototype
A1  - Kauschke, Sebastian
A1  - Fürnkranz, Johannes
A1  - Janssen, Frederik
ED  - Calders, Toon
ED  - Ceci, Michelangelo
ED  - Malerba, Donato
TI  - Proceedings of the 19th International Conference on Discovery Science (DS-16)
Y1  - 2016
SP  - 151
EP  - 166
PB  - Springer-Verlag
CY  - Bari, Italy
SN  - 978-3-319-46306-3
UR  - http://link.springer.com/chapter/10.1007/978-3-319-46307-0_10
M2  - doi: 10.1007/978-3-319-46307-0_10
N2  - In cargo transportation, reliability is a crucial issue. In the case of railway traffic, the consequences of locomotive failure are not limited to the affected machine, but are propagated through the railway network and may affect public transport as well. Therefore it is desirable to predict and avoid failures. In order to do this, constant monitoring of the trains’ systems and measurement of the relevant variables is required, but often not implemented. In this paper we leverage the existing technology of the 185 locomotive series and build a layered model for power converter failure prediction that can be applied without additional technology. We train instance anomaly detectors based on the pattern structure of the locomotives’ diagnostic messages from historical data records. For this purpose we selected rule and decision tree learning because they can be easily implemented in the existing software, whereas more complex classifiers would require costly software adaptations. In order to predict a time series of instances, we construct a meta classification layer. We then evaluate our model on the data of 180 locomotive tours by leave one out classification. The results show that the meta classifier improves classification accuracy, which will allow us to use this technology in a fielded prototype installation without disturbing daily operations.
ER  -