Pattern Subset Selection

Jilles Vreeken
Algorithmic Data Analysis group
Universiteit Utrecht
The Pattern Mining Question

- For a database db
 - a pattern language \mathcal{P} and
 - a set of constraints \mathcal{C}

- Find the set of patterns $S \subseteq \mathcal{P}$ such that
 - each $p \in \mathcal{P}$ satisfies each $c \in \mathcal{C}$ on db
 - S is maximal

- That is, we want all patterns that satisfy the constraints
Careful what you wish for...

- The pattern explosion:
 - High thresholds: few, well-known patterns
 - Low thresholds: a gazillion patterns

- Many patterns seem redundant

- The set of patterns is unstable
 - Small data change: different results
Boiling them Down

There are many proposals to deal with these problems:

- Condensed representations
 - The complete set of patterns can be reconstructed
 - E.g. closed patterns, non-derivable patterns

- Quality measures, such as lift
 - Based on the intended application

- All these approaches consider *individual* patterns
Nothing but the Best

- The root of all this evil is:
 - We ask for all patterns that satisfy some constraints
 - While, at the same time, we want a small set

- In other words, we want a set of patterns such that:
 - All members of the set satisfy the constraints
 - The set is optimal with regard to some criterion
Optimal? Come Again?

- You mean, the pattern set that best...
- describes the (distribution of the) data,
- separates the data into its classes,
- covers the 1’s with fewest patterns,
- splits the data into non-overlapping parts,
- complies with a number of constraints on the pattern set,
- or, what exactly?
Crossroads

View A: Lossy
- Only the ‘best’ patterns, ignore ‘noise’
- Don’t have to cover every row
- Don’t have to cover every attribute

View 1: Lossless
- All of the data is potentially interesting
- Every row fully covered
- Very exploratory in nature
Regarding Patterns as Features

Patterns match a data row, or they don’t
- It’s a binary feature!
- Pattern subset selection resembles feature selection

Many selection criteria make sense, e.g.
- Maximise accuracy: identify classes
- Maximise entropy: carve up the data space
Selecting from Pattern Feature Space

- Maximally Informative k-Itemsets
 - k patterns such that their joint entropy is maximal
 - Miki’s – Knobbe & Ho, KDD’06

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

$\{\text{, }, \text{, }\}$
$\{\text{, }, \text{, }\}$

- More abstract: criterion as parameter
 - Exhaustive:
 Pattern Teams - Knobbe & Ho, PKDD’06
 - Greedy:
 Chosen Few - Bringmann & Zimmermann, ICDM’07

bad
good
Some Lossy Discussion

- Freedom!
 - Independent of pattern syntax
 - Criterion can be chosen: accuracy, mutual information, joint entropy, ...

- Very strong reduction!

- Pattern set cannot explain everything
 - Important interactions may be missed

- Search either exhaustive or very greedy
Full Coverage

Pattern sets that cover all of the data

Syntax matters!

0/1 data, itemsets

‘Colouring’ the database:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>🟠</td>
<td>🟠</td>
<td>🟠</td>
<td>🟠</td>
<td>🟤</td>
<td>🟠</td>
<td>🟠</td>
<td>🟠</td>
</tr>
<tr>
<td>🟠</td>
<td>🟠</td>
<td>🟠</td>
<td>🟠</td>
<td>🟤</td>
<td>🟠</td>
<td>🟠</td>
<td>🟠</td>
</tr>
<tr>
<td>🟠</td>
<td>🟠</td>
<td>🟠</td>
<td>🟠</td>
<td>🟤</td>
<td>🟠</td>
<td>🟠</td>
<td>🟠</td>
</tr>
<tr>
<td>🟤</td>
<td>🟤</td>
<td>🟤</td>
<td>🟤</td>
<td>🟤</td>
<td>🟤</td>
<td>🟤</td>
<td>🟤</td>
</tr>
</tbody>
</table>

Patterns

- 🟠: A B
- 🟠: C D F G H
- 🟤: B D E G
- 🟤: H
- 🟤: E
- 🟤: F
Selection in Data Space

- Finding large areas of 1s
 - Tiling – Geerts, Goethals & Mielikäinen, DS’04
 - NP-hard, good & fast approximation

- Finding the best data description
 - KRIMP – Siebes, Vreeken & van Leeuwen, SDM’06
 - MDL (compression) considers quality and complexity
 - For discrete data: itemsets, sequences, graphs
Discussing Lossless Pattern Sets

Wow!

- High quality data descriptions
- Global models naturally formed

However...

- Results in more patterns than lossy
- Computationally complex
Bridging the Gap?

Grand Unifying Theory?
- Major stumbling block: pattern usage
- Conceptual bridge difficult to build

General framework holds promise
- Constraint-based Pattern Set Mining, De Raedt & Zimmermann, SDM’07
- Pattern set properties depend on the user
the Future, and so on

Pandora’s box only just been opened
- Lots of ground to be covered
- Feature selection as Pattern selection?

Scale remains an issue
- Industrial strength techniques and implementations:
 millions of transactions, billions of patterns

Upcoming:
- How do different selection criteria perform?
- Which, and how much data?
- Keeping the user in the selection loop
Thank you for your attention!

Any questions?
The Bigger Picture

<table>
<thead>
<tr>
<th>Approach</th>
<th>Lossy</th>
<th>Optimal</th>
<th>Data</th>
<th>0/1 Symmetric</th>
<th># Patterns</th>
<th>Overfitting Sensitive?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miki’s</td>
<td>Yes</td>
<td>Yes</td>
<td>Any</td>
<td>Yes</td>
<td>k (2~5)</td>
<td>Yes</td>
</tr>
<tr>
<td>Pattern Teams</td>
<td>Yes</td>
<td>Yes</td>
<td>Any</td>
<td>Yes</td>
<td>k (3)</td>
<td>Yes</td>
</tr>
<tr>
<td>Chosen Fews</td>
<td>Yes</td>
<td>No</td>
<td>Any</td>
<td>Yes</td>
<td>10~100s</td>
<td>Yes</td>
</tr>
<tr>
<td>Krimp</td>
<td>No</td>
<td>No</td>
<td>0/1</td>
<td>No</td>
<td>100~1000s</td>
<td>No</td>
</tr>
<tr>
<td>Tiling</td>
<td>Can</td>
<td>No</td>
<td>0/1</td>
<td>No</td>
<td>k to 100s</td>
<td>Yes</td>
</tr>
<tr>
<td>CB Pattern Sets</td>
<td>Might</td>
<td>Yes</td>
<td>Any</td>
<td>Can</td>
<td>Depends</td>
<td>Perhaps</td>
</tr>
</tbody>
</table>