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Abstract. The assessment of a person's traits such as ability is a fun-
damental problem in human sciences. Compared to traditional paper
and pencil tests, computer based assessment not only facilitates data
acquisition and processing, but also allows for real-time adaptivity and
personalization. By adaptively selecting tasks for each test subject, com-
petency levels can be assessed with fewer items. We focus on assessments
of traits that can be measured by determining the shortest time limit al-
lowing a testee to solve simple repetitive tasks (speed tests). Existing ap-
proaches for adjusting the time limit are either intrinsically non-adaptive
or lack theoretical foundation. By contrast, we propose a mathematically
sound framework in which latent competency skills are represented by
belief distributions on compact intervals. The algorithm iteratively com-
putes a new di�culty setting, such that the amount of belief that can be
updated after feedback has been received is maximized. We rigorously
prove a bound on the algorithms' step size paving the way for conver-
gence analysis. Empirical simulations show that our method performs
equally well or better than state of the art baselines in a near-realistic
scenario simulating testee behaviour under di�erent assumptions.

1 Introduction

The assessment of a person's traits such as ability is a fundamental problem
in the human sciences. Perhaps the most prominent example is the Programme
for International Student Assessment (PISA) launched by the Organisation for
Economic Cooperation and Development (OECD) in 1997. Traditionally, assess-
ments have been conducted with printed forms that had to be �lled in by the
testees (paper and pencil tests). Nowadays, computers and handhelds become
more and more popular as platforms for conducting studies in social sciences;
electronic devices not only facilitate data acquisition and processing, but also
allow for real-time adaptivity and personalization.

For every testee, adaptive computer-based tests estimate personalized pa-
rameters θ̂ to model the actual belief about her true (but hidden) competency
θ. Optimally, every item is selected according to the maximal information gain
for the estimation process. E.g., a common technique is to choose an item with



a 50% chance of being solved correctly. A sequence of correct answers leads
therefore to selecting more di�cult items and, vice versa, a sequence of incorrect
answers to simpler items.

Psychological testing di�erentiates between two types of tests, namely power

and speeded tests [2]. The former uses items with a wide range of di�culty levels,
so that testees will almost surely be unable to solve all items, even when they are
given unlimited time. On the contrary, speeded tests deploy homogeneous items
that are easy to solve. The di�culty in speeded tests is realized by narrow time
intervals in which the response has to be given. In adaptive speed tests, the latent
competency parameter θ̂ encodes for instance reaction time, concentration, or
awareness of the testee. An example of such a test is the Frankfurt Adaptive
Concentration Test II (FACT-II) [4] where a simple multiplicative update of the

estimate θ̂ is applied for the adaptation process.

In this paper, we present a novel framework for learning competency param-
eters in speeded tests. The formal problem setting resembles a game played in
rounds. In each round, the goal is to gain as much information as possible on the
di�culty setting θ corresponding to the testee's competency. The uncertainty
of an estimate θ̂ is represented by a belief distribution over a compact interval.
At round t, a new estimate θ̂t is drawn, such that θ̂t divides the belief mass in
two equally sized halves. Note that this roughly corresponds to a 50% chance
of success for the testee. The testee solves the item which realizes a di�culty
level of θ̂t. The agent observes the response ρt. We di�erentiate three cases: (i)

if θ̂t < θt, the di�culty induced by θ̂t was too easy for the testee and ρt = 1, (ii)

in case θ̂t > θt, the setting as too di�cult and ρt = −1, and (iii) θt = θ̂t which
corresponds to a just right setting and response ρt = 0. A similar scenario for
discrete variables has been studied by [3] in the context of computer games.

Before we continue with the presentation of our method, note that the prob-
lem setting does not match traditional approaches, including standard supervised
(e.g., binary classi�cation) and unsupervised (e.g., density estimation) settings,
as the feedback needs to be viewed a directional and not a point-wise one and we
cannot make assumption on the testee or stationarity of the observations due to
learning e�ects and tiredness. Thus, the directional feedback is used to update
exactly half of the belief mass for maximal information gain. The rationale be-
hind this update strategy is the following: once we observe that θ̂ is too di�cult,
it is highly probable that all di�culty levels θ̃ > θ̂ are also too di�cult. A similar
argument holds vice versa for too easy. The directional feedback is therefore used
as a nominal reward that triggers the update process. While a proof of conver-
gence of the proposed algorithm is subject of future work, we rigorously prove
results on the step size of the proposed algorithm and show that it performs
equally well or better than state of the art baselines in a near-realistic scenario
modelling testee behaviour. The remainder is organized as follows. Section 2
reviews related work. We present our main contributions, the learning agent
and a theoretical analysis in Sections 3 and 4, respectively. Section 5 reports on
simulation studies and Section 6 concludes.



2 Related Work

Motivated by applications in computer games as well as teaching systems, Mis-
sura & Gärtner [3] considered the problem of dynamic di�culty adjustment.
They formalized the problem setting as a game between a master and a player
played in rounds t = 1, 2, · · · , where the master predicts the di�culty setting for
the next round. After the player has �nished his turn, the master gets feedback
on whether the proposed setting has been too easy, just right, or too di�cult.
Based on this feedback, the master updates the belief on the correctness of the
available di�culty settings and predicts the setting for the next round. The
authors introduce the Partial Ordered Set Master (POSM) algorithm that rep-
resents the set of admissible di�culty settings as a �nite discrete set K endowed
with a partial ordering ≺. For each of the di�culty levels k ∈ K, POSM main-
tains a positive number representing belief in k being just right. At each round,
the prediction allows to update the maximal amount of belief after feedback has
been received. Then, if the feedback indicates that kt was too hard, belief in all
di�culty levels k � kt is reduced by a multiplicative update. Analogously, if kt
was too easy, belief in all di�culty levels k � kt is reduced. Using properties of
a representation of K as a directed acylic graph, the authors prove a bound on
the regret realized by POSM. We will show later that the POSM algorithm for
the case of a totally ordered set of di�culty settings is contained as a special
case within our framework. In contrast to [3], we use a continuous framework
and do not rely on a prede�ned set of discrete di�culty settings, but instead
�nd appropriate settings adaptively on the �y.

Csáji and Weyer [1] investigated the problem of estimating a constant based
on noisy measurements of a binary sensor with adjustable threshold. Formally,
they considered estimating a constant θ∗ ∈ R that is disturbed by additive, i.i.d.
noise Nt resulting in a quantity

Xt = θ∗ +Nt

of which only binarized measurements of the form

Yt =

{
1 if Xt ≤ θt
0 else

are available for t = 0, 1, 2 . . .. The threshold θt is assumed to be adjustable based
on all previous observations and threshold values. Under mild assumptions on
the distribution of Nt, which hold e.g. for every symmetric distribution with
mean 0, they derive a strongly consistent estimator for θ∗ based on stochas-
tic approximation. That is, if the assumptions hold and (αt)t∈N ⊂ R satis�es∑∞
t=0 αt =∞,

∑∞
t=0 α

2
t <∞ and ∀t ≥ 0 : αt ≥ 0, then for any starting value θ0,

the sequence

θt+1 = θt + αt

(
1

2
− Yt

)
converges to θ∗ almost surely. In contrast to [1], we do not make any assumptions
on the distribution of the value to be estimated or on its stationarity.



In the �eld of psychometrics, only a few adaptive speed tests have been de-
signed. For the assessment of concentration ability, Goldhammer & Moosbrug-
ger [4] suggested the Frankfurt Adaptive Concentration Test II (FACT-II). As
FACT-II conceptualizes concentration as the ability to respond to stimuli in the
presence of distractors, testees are shown a set of items comprising of target
and non-target items. They are instructed to hit one button, if a target item is
present, and another button, if no target item is among the items shown. After
each round t, exposure time is adjusted until a liminal exposure time is reached
that just allows the testee to solve the task. Starting with a �xed initial exposure
time θ1, updating is performed multiplicatively depending on whether a response
is given in time or not.

3 A Learning Agent for Parameter Estimation in

Speeded Tests

We cast the problem of learning competency parameters in speeded tests as
a game between an agent A and a testee T played in rounds t = 1, 2, . . . on a
continuous interval of di�culty settings Θ = [a, b]. Θ is governed by a total order
relation > induced by the real numbers corresponding to the more-di�cult-than

relation. We assume that at each round, there is a just right setting θt ∈ Θ for
the testee T . At round t, (i) the agent chooses a setting θ̂t ∈ Θ based on the
current belief, (ii) the testee responds, and (iii) the agent observes directional
feedback of the form ρt ∈ {−1, 0,+1} subject to the following rule:

ρt =


+1 if θ̂t < θt, too easy

0 if θ̂t = θt, just right

−1 if θ̂t > θt, too di�cult

Note that the just right setting remains hidden to the agent at all times.
In the course of the game, the agent is choosing actions θ̂t from the space of

possible actions Θ that lead to a reward signal ρt depending on the state of the
environment θt. The goal of the agent is to reach the rewarding state of having
selected the just right setting by avoiding the punishing signals associated with
too di�cult or too easy settings.

The general idea of our approach is the following: We use a function wt :
[a, b] → (0,∞) to model the agent's belief at time t about the optimal action
based on the experience gathered at time-steps 1, . . . , t − 1. Suppose that the
agent selects a setting θ̂t and receives feedback ρt = +1 (too easy). Because of
the transitivity of the ordering of di�culty settings, the agent not only learns
about θ̂t as an isolated point, but also learns that all settings θ̃ which are easier
than θ̂t, i.e., θ̃ < θ̂t, would also have been too easy and the agent updates the
belief on the whole interval [a, θ̂t]. The mass of belief that can be updated is
then given by

At(θ̂t) :=

∫ θ̂t

a

wt(x)dx.



Similarly, if ρt = −1, the belief in the interval [θ̂t, b] can be updated and the
mass of updatable belief is

Bt(θ̂t) :=

∫ b

θ̂t

wt(x)dx.

If ρt = 0, there is no reason to update belief, because current knowledge has
led to a correct prediction. We devise the following strategy for predicting θ̂t
and updating belief: The di�culty setting θ̂t for the upcoming round is selected
in order to allow to update as much belief as possible after feedback has been
obtained. That is, we select θ̂t so that

θ̂t = argmax min
θ̃∈[a,b]

{
At(θ̃), Bt(θ̃)

}
. (1)

It can easily be seen that this amounts to selecting θ̂t such that

At(θ̂t) =
1

2

∫ b

a

wt(x)dx.

Equivalently, θ̂t can be characterized by At(θ̂t) = Bt(θ̂t). Because wt is non-

negative by assumption, the mapping θ̂t 7→ At(θ̂t) is strictly increasing and thus

bijective, so θ̂t is uniquely determined if only
∫ b
a
wt(x)dx 6= 0. In order to derive

an algorithm from this framework, we need to specify the space of belief functions
W and the belief updating rule

W × {−1, 0, 1} → W, (wt, ρt) 7→ wt+1.

The next section introduces strategies to learn the agent.

3.1 Interval Subdivision Agent

While there is no restriction on the space of belief functions arising from the
general framework, we choose to use the space of non-negative step functions
on [a, b] for W and an exponential updating rule based on interval subdivision.

That is, we divide the interval containing the actual prediction θ̂t at θ̂t and
update the belief values to the left or right of θ̂t depending on the feedback
ρt by multiplying with a parameter β ∈ (0, 1). Formally, denoting by χM the
characteristic or indicator function of a set M ⊂ R, we write wt as a sum

wt =

Nt∑
i=1

y
(t)
i χ

I
(t)
i

for some Nt ∈ N, where y(t)i ≥ 0 is the value wt takes on the ith interval given
by

I
(t)
i = [x

(t)
i−1, x

(t)
i )



Algorithm 1 ISA: Interval Subdivision Agent

Require: parameter β ∈ (0, 1), initial interval endpoints I(1) =(
a = x

(1)
0 , · · · , x(1)N1

= b
)
, initial belief function values Y(1) =

(
y
(1)
1 , · · · , y(1)N1

)
1: for each turn t = 1, 2, · · · do
2: Determine θ̂t such that At(θ̂t) =

1
2

∫ b

a
wt(x)dx

3: Acquire feedback ρt ∈ {−1, 0, 1}
4: if ρt = 1 then

5: Let I(t+1) = (x
(t)
0 , · · · , x(t)i∗t−1, θ̂t, x

(t)
i∗t
, · · · , x(t)Nt

)

6: Let Y(t+1) =
(
βy

(t)
1 , · · · , βy(t)i∗t

, y
(t)
i∗t
, · · · , y(t)Nt

)
7: else if ρt = −1 then

8: Let I(t+1) = (x
(t)
0 , · · · , x(t)i∗t−1, θ̂t, x

(t)
i∗t
, · · · , x(t)Nt

)

9: Let Y(t+1) =
(
y
(t)
1 , · · · , y(t)i∗t

, βy
(t)
i∗t
, · · · , βy(t)Nt

)
10: end if

11: end for

for i = 1 · · · , Nt − 1 and I
(t)
Nt

= [xNt−1, xNt
]. The interval endpoints are de�ned

by a partition

a = x
(t)
0 < x

(t)
1 < x

(t)
2 < · · · < x

(t)
Nt

= b

of [a, b]. By i∗t we denote the index of the interval containing θ̂t. If ρt = 1, we set

wt+1 =

i∗t−1∑
i=1

βyiχI(t)i
+ βyi∗tχ[xi∗t−1,θ̂t)

+ yi∗tχ[θ̂t,xi∗t
) +

Nt∑
i=i∗t+1

yiχI(t)i
, (2)

if ρt = −1, we set

wt+1 =

i∗t−1∑
i=1

yiχIi + yi∗tχ[xi∗t−1,θ̂t)
+ βyi∗tχ[θ̂t,xi∗t

) +

Nt∑
i=i∗t+1

βyiχIi . (3)

Finally, if ρt = 0 no update is necessary and wt+1 = wt. The belief function

can be stored and updated e�ciently by storing the endpoints x
(t)
1 , · · · , x(t)Nt−1

and function values y
(t)
1 , · · · , y(t)N . Also, our particular choice of W makes the

computation of θ̂ simple and inexpensive: As w is a step function, its integral
over θ is given by ∫ b

a

wt(x)dx =

Nt−1∑
i=1

yi (xi+1 − xi)

Algorithm 3.1 shows a pseudocode implementation of the interval subdivision
agent (ISA). As speci�ed in Equations 2 and 3, depending on the response ρt,
the current partition is updated in lines 5�8 by inserting the current estimate
θ̂t as a new interval endpoint into the current partition. The belief values are
updated in lines 6�9 by scaling the beliefs of the intervals to the left or right



Algorithm 2 LISA: Limited-memory Interval Subdivision Agent

Require: parameter β ∈ (0, 1), initial interval endpoints I(1) =(
a = x

(1)
0 , · · · , x(1)N1

= b
)
, initial belief function values Y(1) =

(
y
(1)
1 , · · · , y(1)N1

)
,

limit on interval width ε
1: for each turn t = 1, 2, · · · do
2: Determine θ̂t such that At(θ̂t) =

1
2

∫ b

a
wt(x)dx

3: Acquire feedback ρt ∈ {−1, 0, 1}
4: if ρt = 1 then

5: if θ̂t − xi∗t−1 > ε and xi∗t − θ̂t > ε then

6: Let I(t+1) = (x
(t)
0 , · · · , x(t)i∗t−1, θ̂t, x

(t)
i∗t
, · · · , x(t)Nt

)

7: Let Y(t+1) =
(
βy

(t)
1 , · · · , βy(t)i∗t

, y
(t)
i∗t
, · · · , y(t)Nt

)
8: else

9: Let It+1 = It
10: Let Yt+1 =

(
βy

(t)
1 , · · · , βy(t)i∗t

, y
(t)
t∗t+1, · · · , y

(t)
Nt

)
11: end if

12: else if ρt = −1 then

13: if θ̂t − xi∗t−1 > ε and xi∗t − θ̂t > ε then

14: Let I(t+1) = (x
(t)
0 , · · · , x(t)i∗t−1, θ̂t, x

(t)
i∗t
, · · · , x(t)Nt

)

15: Let Y(t+1) =
(
y
(t)
1 , · · · , y(t)i∗t

, βy
(t)
i∗t
, · · · , βy(t)Nt

)
16: else

17: Let It+1 = It
18: Let Yt+1 =

(
y
(t)
1 , · · · , y(t)i∗t

, βy
(t)
t∗t+1, · · · , βy

(t)
Nt

)
19: end if

20: end if

21: end for

of θ̂t, respectively. The initial belief function w1 can be tailored to incorporate
prior knowledge about where to expect θ1. In the absence of prior knowledge on
the distribution of θ, w1 ≡ 1 serves as a possible initialization.

3.2 Limited-memory Interval Subdivision Agent

The memory usage of the ISA algorithm at time t is in O(t). Indeed, if w0 is
represented by N interval-value pairs, each step adds at most one node in the
belief function. A limit on the amount of memory consumed by ISA can be
imposed by limiting interval subdivision. In Algorithm 2, we introduce limited-
memory ISA (LISA) that only subdivides intervals when subdivision results in
intervals of width greater than a given parameter ε > 0. If the conditional on
interval length implemented in lines 5 and 13 holds, updating is perfomed as in
ISA. If not, the current partition and corresponding intervals remain unchanged
(lines 9 and 14) but the belief values are updated. This is done by multiplying

belief values belonging to intervals to the left respectively right of θ̂t as well as
belief on the interval containing θ̂t (lines 10 and 18).



4 Theoretical Analysis

In this section we present a rigorous theoretical analysis of the ISA algorithm.
We are interested in characterizing convergence properties of ISA under di�erent
assumptions. The simplest assumption that can be made about the just right

setting is that it remains constant at all times. That is, θt ≡ c for c ∈ [a, b] and
all t ∈ N. In this case, numerical experiments show that the sequence of values
produced by the ISA algorithm converges to c. We now prove a bound on the
step size between successive predictions by ISA. The bound follows directly from
Lemma 1.

Lemma 1. Let f : [a, b] → (0,∞) be bounded and integrable on [a, b]. Let β ∈
(0, 1). Let θ1, θ2 ∈ [a, b] be numbers such that

∫ θ1
a
f(x)dx = 1

2

∫ b
a
f(x)dx and∫ θ2

a
f̂(x)dx = 1

2

∫ b
a
f̂(x)dx, where

f̂(x) =

{
βf(x) if a ≤ x ≤ θ1
f(x) if θ1 < x ≤ b

.

Then θ1 < θ2 and

1− β
4M

∫ b

a

f(x)dx ≤ θ2 − θ1 ≤
1− β
4m

∫ b

a

f(x)dx. (4)

where M := maxx∈[a,b] f(x) and m := minx∈[a,b] f(x).

Proof. To prove θ1 ≤ θ2, assume for a moment that θ1 > θ2. By de�nition it
holds that ∫ θ2

a

f̂(x)dx =
1

2

∫ θ1

a

f̂(x)dx+
1

2

∫ b

θ1

f̂(x)dx,

which, by using the de�nition of f̂ and the assumption, resolves to

β

∫ θ2

a

f(x)dx =
1

2
β

∫ θ1

a

f(x)dx+
1

2

∫ b

θ1

f(x)dx =
β + 1

4β

∫ b

a

f(x)dx,

where we used that by de�nition both integrals on the RHS equal 1
2

∫ b
a
f(x)dx.

By assumption we then have

β + 1

4β

∫ b

a

f(x)dx =

∫ θ2

a

f(x)dx <

∫ θ1

a

f(x)dx =
1

2

∫ b

a

f(x)dx,

yielding β > 1 since
∫ b
a
f(x)dx 6= 0. This contradiction establishes θ1 ≤ θ2;

we now show that equality cannot hold and proceeds as follows. We begin by
subtracting the de�ning equations for θ1 and θ2 and splitting the integrals at θ1
to obtain∫ θ1

a

f(x)− f̂(x)dx−
∫ θ2

θ1

f̂(x)dx =
1

2

(∫ θ1

a

f(x)− f̂(x)dx+

∫ b

θ1

f(x)− f̂(x)dx

)
.



Plugging in the de�nition of f̂ and recalling that θ1 ≤ θ2, we arrive at∫ θ2

θ1

f(x)dx =
(1− β)

2

∫ θ1

a

f(x)dx =
(1− β)

4

∫ b

a

f(x)dx.

Applying the mean value theorem to
∫ θ2
θ1
f(x)dx, we obtain that for some ξ ∈

[θ1, θ2], it holds that

θ2 − θ1 =
(1− β)
4f(ξ)

∫ b

a

f(x)dx.

The desired inequality then follows by bounding f by its minimum and maximum
on [a, b]. Note that the last equation implies that θ1 6= θ2, as the RHS is strictly
positive. ut

Lemma 1 says that if the di�culty level θ̂t estimated by ISA is too easy

(ρt = 1), the new estimate will be greater than its predecessor, that is θ̂t+1 > θ̂t
holds. Analogously the case ρt = −1 implies θ̂t+1 < θ̂t. We use the inequality to
derive a bound on the step size of ISA in the following Theorem 1.

Theorem 1. Let
(
θ̂t

)N
t=1

be a sequence of estimations generated by ISA with

parameter β. Then for t = 1, . . . , N − 1 it holds that

1− β
4Mt

∫ b

a

wt(x)dx ≤
∣∣∣θ̂t+1 − θ̂t

∣∣∣ ≤ 1− β
4mt

∫ b

a

wt(x)dx,

where

Mt := max
x∈[a,b]

wt(x)

and

mt := min
x∈[a,b]

wt(x).

Proof. Mutatis mutandis applying the proof of Lemma 1 to

f̂(x) =

{
f(x) if a ≤ x ≤ θ1
βf(x) if θ1 < x ≤ b

and noting that in the ISA algorithm, wt+1 is derived from wt like f̂ is from f
in Lemma 1, the desired bound follows. ut

Theorem 1 bounds the minimal and maximal di�erence between successive
estimates by ISA. Note that the bounds are invariant under rescaling of the
belief function, but depend on the parameter β that controls learning rate: If β
is small, new experience is given more weight and the lower bound on step size is
greater than its analogue for β ≈ 1 which gives less weight to new information.

We now investigate the relation between LISA and POSM [3] for a completely
ordered set which we denote by Θ′ = {1, · · · , N} for some N ∈ N, endowed with
the natural ordering. The following proposition holds:
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Fig. 1. Randomly parametrized functions modelling θ in absence (left) and presence
of drift (right). In both scenarios white noise is added.

Proposition 1. Let N ∈ N, Θ′ = 1, . . . , N endowed with the natural ordering

be the set of di�culty levels for POSM and let [a, b] = [0, N ]. Let β ∈ (0, 1),
ε < 1. De�ne the initial belief function w0 for LISA by xi = i for i = 0, · · · , N
and yi = 1 for j = 1, · · · , N . Denote by ind(x) the function mapping x ∈ [a, b] to
Θ′ such that x ∈ [xind(x)−1, xind(x)). Then, given a sequence of feedback (ρt)t∈N,

the estimates (k̃t) produced by POSM coincide with (ind(θ̂t))
N
t=1.

Proof. First, note that LISA will not subdivide the initial intervals any further
because the interval sizes are �xed to one. For t = 1, by assumption, the weights
of POSM on each setting θ′ ∈ Θ′ coincide with the belief function values on the
LISA interval Iθ′ . Thus, breaking ties by selecting the harder setting, POSM will
select θ′1 =

⌈
N
2

⌉
and LISA will select the midpoint of [1, N ], θ̂1 = N

2 . Therefore,

ind(θ̂1) = θ̂′1. After updating the weights and belief values, respectively, they
coincide again.

Similar reasoning shows that given coinciding weights at time t, it holds that
ind(θ̂t) = θ̂′t and that after updating, POSM's weights on settings again coincide
with LISA's belief on corresponding intervals. The claim follows by induction.

ut

The result stated in Proposition 1 explains to some extent why ISA and
LISA expose a behaviour qualitatively similar to that of POSM in the setting of
our experiments. As we show in the next section, the LISA and ISA algorithms
are able to exploit the continuous setting, outperforming POSM by a signi�cant
margin.

5 Empirical Results

For our experiments, we simulate near-realistic scenarios to create settings that
re�ect behaviour observed in adaptive psychological speed tests or computer
games. We compare the empirical performance of ISA and LISA to state-of-the-
art baselines POSM [3] and the algorithm used by FACT-II [4].
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Fig. 2. Squared deviations from true θ for the constant setting.

Throughout all our experiments, we use Θ = [0, 1]. Note that this does not
limit generality, as every compact interval can be rescaled and shifted to match
Θ. To allow for a fair comparison, the set of di�culty settings for POSM consists
of N equidistantly sampled points in Θ, where N is the number of time steps
used. This choice guarantees that the number of subdivisions made by ISA and
LISA is less than or equal to the number of settings available to POSM. Thus,
all approaches have access to the same amount of resources. We use optimal
parameters for ISA, LISA and POSM chosen by model selection.

We consider two distinct settings: In the �rst setting, the true parameter θ
remains constant. We sample the constants from a uniform distribution on Θ.
For the constant setting, we also include Csáji-Weyer-Iteration (CWI) [1] as an
additional baseline. In the second setting, we simulate learning and tiredness
e�ects. The true parameter θ thus underlies drifts and the resulting distribution
is not stationary. We use the following function to model the evolution of θ,

f(t) = 1−
(
1 + exp

(
2a− t

5 + 5b

))−1
+

ct2

2N2
,

where the parameters a, b, c are also sampled from a uniform distribution on [0, 1].
Additionally, observations are disturbed by additive noise originating from a
Gaussian distribution with µ = 0, σ = 0.025. Figure 1 shows sample observations
for the two settings. In both settings, we conduct 500 repetitions with randomly
drawn θ (and a, b, c in the second setting) and report on averaged deviations and
standard errors.

Figure 2 shows the results for the constant setting. All algorithms need some
time to adapt to the noisy θ. The three learning algorithms and CWI, however,
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Fig. 3. Squared deviations from true θ in presence of drift

approach the true θ signi�cantly faster than FACT. CWI and ISA approximate
the true θ much more closely with ISA realizing quicker convergence and smaller
error. The squared error is smallest for ISA, followed by the almost equally
performing LISA and POSM. FACT is outperformed by all four competitors by
a large margin (see also Table 1).

Figure 3 summarizes the results for the drift setting. ISA performs best,
followed by LISA and POSM. Again FACT is outperformed signi�cantly by the
others. The squared errors are similar or smaller for all algorithms than they
are in absence of drift (see Table 1), showing that all algorithms can deal with
drift well. The performance of FACT even proves signi�cantly better than in the
setting without drift. This e�ect can be explained by the fact that the model
of drift employed here favors evolutions of θ starting in the upper range of Θ.
Note that FACT is initialized with θ̂0 = 1 which a�ects its performance in the
�rst iterations. The other algorithms bene�t in the beginning from intitalizing
θ with the mean of the search space. However, di�erent choices are possible.

Table 1. Sum of squared deviations from true θ, average over 500 runs.

ISA LISA POSM FACT CWI

constant 3.3842 4.3905 4.2441 34.8336 5.9575

drift 3.4027 4.0825 4.4171 9.4808 �



6 Conclusion

We have introduced a mathematically sound learning framework for parameter
adaptation in speeded tests. Our approach does not make any assumptions on
the distribution of the true parameter and is therefore deployable in settings
characterized by parameter drift and additive noise. While a proof of conver-
gence is subject of future work, we have presented and proven �rst results on
the algorithm's behaviour to pave the way for further analyses. Empirically,
we have shown that the algorithm performs equally or better than state of the
art baselines in di�erent scenarios modelling testee behaviour under di�erent
assumptions. Preliminary experiments using probabilistic assumptions (not pre-
sented here) show that e.g. for normally distributed θ, ISA converges against the
median of the hidden data, yielding P (success) = 50%, which would make the
algorithm also ideally suited for a broader range of applications. To assess ISA's
and LISA's performance in real-world scenarios, we are currently working on ac-
quiring data from crowd-sourced speed tests and also plan to test the algorithm
on dynamic di�culty adaptation scenarios in computer games such as Tetris.
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