AGENDA

1. Preference Learning Tasks (Eyke)
2. Loss Functions (Johannes)
3. Preference Learning Techniques (Eyke)
4. **Complexity of Preference Learning** (Johannes)
 a. Training Complexity
 - SVMRank
 - Pairwise Methods
 b. Prediction Complexity
 - Aggregation of Preference Relations is hard
 - Aggregation Strategies
 - Efficient Aggregation
5. Conclusions
Training Complexity: Number of Preferences

we have \(d \) binary preferences for items \(X = \{x_1, \ldots, x_c\} \)

- total ranking: \(d = \frac{c \cdot (c - 1)}{2} \)
- multi-partite ranking (\(k \) partitions with \(p_i \) items each): \(d = \sum_{i \neq j} p_i \cdot p_j \)
- bi-partite ranking (with \(p \) and \(c-p \) items): \(d = p \cdot (c - p) \) (e.g., multi-label classification)
- top rank: \(d = c - 1 \) (e.g. classification)
Training Complexity of Relational Approach

We generate one training example for each binary preference

- complexity of the binary base learner is $f(d)$
 - e.g. $f(d) = O(d^2)$ for a learner with quadratic complexity

Single-set ranking:

- We have c items with ranking information
- Total complexity $f(d)$ depends on the density of the ranking information
 - quadratic in c for (almost) full rankings
 - linear in c for bipartite rankings with a constant p

Multi-set ranking:

- We have n sets of c items with ranking information
 - label ranking is a special case of this scenario
 - object ranking where multiple sets of objects are ranked is also a special case
- Total complexity is
 - $f(n \cdot d)$ for approaches where all preferences are learned jointly
 - can be more efficient if f is super-linear and problem is decomposed into smaller subproblems (pairwise label ranking)
Example: Complexity of SVMRank

- **Reformulation as Binary SVM** [Herbrich et al. 2000, Joachims 2002]
 - d constraints of the form $\mathbf{w}^T (x_i - x_j) \geq 1 - \xi_{ij}$
 - d slack variables ξ_{ij}

 Total complexity: $f(d)$
 - where $f(.)$ is the complexity for solving the quadratic program
 - super-linear for conventional training algorithms like SMO, SVM-light, etc.

- **Reformulation as Structural SVM** [Joachims 2006]
 - 2^d constraints of the form $\frac{1}{d} \cdot \sum_{x_i > x_j} c_{ij}(x_i - x_j) \geq \frac{1}{d} \cdot \sum c_{ij} - \xi$
 - 1 slack variable ξ

 Total complexity: d

 - **Cutting-Plane algorithm:**
 - iterative algorithm for solving the above problem in linear time
 - iteratively find an appropriate subset of the constraints
 - convergence independent of d
 - further optimization could even yield a total complexity of $\min(n \cdot \log(n), d)$
Example: Complexity of Pairwise Label Ranking

- n examples, c classes, d preferences in total, $\overline{d} = \frac{d}{n}$ preferences on average
 - decomposed into $\frac{c \cdot (c-1)}{2}$ binary problems
 - each problem has n_{ij} examples $\sum_{ij} n_{ij} = d$

→ total training complexity

$$\sum_{ij} f(n_{ij}) \leq \overline{d} \cdot f(n) \leq f(d) = f \left(\sum_{ij} n_{ij} \right)$$

- upper bounds are tight if f is linear
- big savings are possible super-linear complexities $f(n) = n^o (o > 1)$
 - distributing the same number of examples over a larger number of smaller dataset is more efficient

$$o > 1 \rightarrow \sum n_i^o < \left(\sum n_i \right)^o$$

[Hüllermeier et al. 2008]
Example: Complexity of Pairwise Classification

- Pairwise classification can be considered as a label ranking problem
 - for each example the correct class is preferred over all other classes

\[\text{Total training complexity} \leq (c - 1) \cdot f(n) \]

For comparison:

- **Constraint Classification:**
 - Utility-based approach that learns one theory from all \((c - 1) \cdot n\) examples
 - Total training complexity: \(f((c - 1) \cdot n)\)

- **One-Vs-All Classification:**
 - different class binarization that learns one theory for each class
 - Total training complexity: \(c \cdot f(n)\)
AGENDA

1. Preference Learning Tasks (Eyke)
2. Loss Functions (Johannes)
3. Preference Learning Techniques (Eyke)
4. **Complexity of Preference Learning** (Johannes)
 a. Training Complexity
 - SVMRank
 - Pairwise Methods
 b. **Prediction Complexity**
 - Aggregation of Preference Relations is hard
 - Aggregation Strategies
 - Efficient Aggregation

5. Conclusions
Prediction Complexity

f complexity for evaluating a single classifier, c items to rank

- **Utility-Based Approaches:**
 - compute the utilities for each item: $c \cdot f$
 - sort the items according to utility: $c \cdot \log(c)$

- **Relational Approaches:**
 - compute all pairwise predictions: $\frac{c \cdot (c-1)}{2} \cdot f$
 - aggregate them into an overall ranking
 - method-dependent complexity

- Can we do better?
Aggregation is NP-Hard

- The key problem with aggregation is that the learned preference function may not be transitive.
 - Thus, a total ordering will violate some constraints

Aggregation Problem:
- Find the total order that violates the least number of predicted preferences.

- equivalent to the Feedback Arc Set problem for tournaments
 - What is the minimum number of edges in a directed graph that need to be inverted so that the graph is acyclic?
- This is NP-hard [Alon 2006]
 - but there are approximation algorithms with guarantees
 - For example, [Ailon et al. 2008]
 - propose Kwiksort, a straight-forward adaption of Quicksort to the aggregation problem
 - prove that it is a randomized expected 3-approximation algorithm
Aggregating Pairwise Predictions

- Aggregate the predictions $P(\lambda_i > \lambda_j)$ of the binary classifiers into a final ranking by computing a score s_i for each class I

 - **Voting**: count the number of predictions for each class (number of points in a tournament)
 $$s_i = \sum_{j=1}^{c} \delta \left(P(\lambda_i > \lambda_j) > 0.5 \right)$$

 - **Weighted Voting**: weight the predictions by their probability
 $$s_i = \sum_{j=1}^{c} P(\lambda_i > \lambda_j)$$

- **General Pairwise Coupling problem** [Hastie & Tibshirani 1998; Wu, Lin, Weng 2004]
 - Given $P(\lambda_i > \lambda_j) = P(\lambda_i | \lambda_i, \lambda_j)$ for all i, j
 - Find $P(\lambda_i)$ for all i
 - Can be turned into a system of linear equations
Pairwise Classification & Ranking Loss
[Hüllermeier & Fürnkranz, 2010]

→ Weighted Voting optimizes Spearman Rank Correlation
 ▪ assuming that pairwise probabilities are estimated correctly

→ Kendall's Tau can in principle be optimized
 ▪ NP-hard (feedback arc set problem)

Different ways of combining the predictions of the binary classifiers optimize different loss functions
 ▪ without the need for re-training of the binary classifiers!

However, not all loss functions can be optimized
 ▪ e.g., 0/1 loss for rankings cannot be optimized
 ▪ or in general the probability distribution over the rankings cannot be recovered from pairwise information
Speeding Up Classification Time

- Training is efficient, but pairwise classification still has to
 - store a quadratic number of classifiers in memory
 - query all of them for predicting a class

Key Insight:
- Not all comparisons are needed for determining the winning class
- More precisely:
 - If class X has a total score of \(s \)
 - and no other class can achieve an equal score
 \(\rightarrow \) we can predict X even if not all comparisons have been made

Algorithmic idea:
- Keep track of the loss points
- if class with smallest loss has played all games, it is the winner
 \(\rightarrow \) focus on the class with the smallest loss
- Can be easily generalized from voting (win/loss) to weighted voting (e.g., estimated pairwise win probabilities)
Quick Weighted Voting
[Park & Fürnkranz, ECML 2007]

\[
\text{while } c_{\text{top}} \text{ not determined do}
\]
\[
c_a \leftarrow \text{class } c_i \in K \text{ with minimal } l_i;
\]
\[
c_b \leftarrow \text{class } c_j \in K \setminus \{c_a\} \text{ with minimal } l_j \text{ & classifier } C_{a,b} \text{ has not yet been evaluated;}
\]
\[\text{if } \text{no } c_b \text{ exists then}
\]
\[
c_{\text{top}} \leftarrow c_a;
\]
\[\text{else}
\]
\[
v_{ab} \leftarrow \text{Evaluate}(C_{a,b});
\]
\[
l_a \leftarrow l_a + (1 - v_{ab});
\]
\[
l_b \leftarrow l_b + v_{ab};
\]

select class with fewest losses
pair it with unplayed class with fewest losses
we're done if no such class can be found
evaluate the classifier and update loss statistics
Decision-Directed Acyclic Graphs
[Platt, Cristianini & Shawe-Taylor, NIPS 2000]

DDAGS
- construct a **fixed decoding scheme** with $c-1$ decisions
- unclear what loss function is optimized

Comparison to QWeighted
- DDAGs slightly faster
- but considerably less accurate

<table>
<thead>
<tr>
<th>dataset</th>
<th>JRip</th>
<th>NB</th>
<th>C4.5(J48)</th>
<th>SVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>vehicle</td>
<td>73.88</td>
<td>72.46</td>
<td>45.39</td>
<td>71.99</td>
</tr>
<tr>
<td>glass</td>
<td>74.77</td>
<td>74.30</td>
<td>49.07</td>
<td>71.50</td>
</tr>
<tr>
<td>image</td>
<td>96.62</td>
<td>96.41</td>
<td>80.09</td>
<td>96.93</td>
</tr>
<tr>
<td>yeast</td>
<td>58.96</td>
<td>58.09</td>
<td>57.55</td>
<td>58.56</td>
</tr>
<tr>
<td>vowel</td>
<td>82.42</td>
<td>76.67</td>
<td>63.84</td>
<td>82.93</td>
</tr>
<tr>
<td>soybean</td>
<td>94.00</td>
<td>93.56</td>
<td>92.97</td>
<td>93.56</td>
</tr>
<tr>
<td>letter</td>
<td>92.33</td>
<td>88.33</td>
<td>63.08</td>
<td>91.50</td>
</tr>
</tbody>
</table>

Accuracy: left - QWeighted, right - DDAG
Average Number of Comparisons for QWeighted algorithm

<table>
<thead>
<tr>
<th>dataset</th>
<th>c</th>
<th>$\frac{c(c-1)}{2}$</th>
<th>QW</th>
<th>DDAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>vehicle</td>
<td>4</td>
<td>6</td>
<td>3,98</td>
<td>3</td>
</tr>
<tr>
<td>glass</td>
<td>7</td>
<td>21</td>
<td>9,75</td>
<td>6</td>
</tr>
<tr>
<td>image</td>
<td>7</td>
<td>21</td>
<td>8,75</td>
<td>6</td>
</tr>
<tr>
<td>yeast</td>
<td>10</td>
<td>45</td>
<td>15,87</td>
<td>9</td>
</tr>
<tr>
<td>vowel</td>
<td>11</td>
<td>55</td>
<td>17,42</td>
<td>10</td>
</tr>
<tr>
<td>soybean</td>
<td>19</td>
<td>171</td>
<td>27,65</td>
<td>18</td>
</tr>
<tr>
<td>letter</td>
<td>26</td>
<td>325</td>
<td>45,01</td>
<td>25</td>
</tr>
</tbody>
</table>

[Graph showing the relationship between the number of classes c and the number of comparisons for different datasets, including vehicle, glass, image, yeast, vowel, soybean, and letter.]
References

- T. Joachims, Training Linear SVMs in Linear Time, Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD), 2006