3.2 Preference learning on multi-valued
categorical attributes

The linguistic algorithm used to adapt categorical preferences
explained in Section 2 needs some improvements to be able to
manage lists of values. When single-valued attributes were
considered, the user selection pointed directly towards the value
the user liked for that attribute. Now, however, we cannot be sure
which one/s of the values listed in the attribute is/are the one/s of
interest for the user. That is the reason why it has been necessary to
design a “relevance function” which indicates how relevant is a
value found among the over ranked alternatives or in the selected
alternative. Relevance is measured in a [0,1] scale, with 1 meaning
maximum relevance. To calculate how relevant a term t of the
attribute j is among the over ranked alternatives we use this
expression (the relevance value is 0 if it does not appear in the over
ranked alternatives):

Re= L3 L ©
oS

Here, no represents the number of over ranked alternatives, nt
the number of over ranked alternatives where t appears, and nv‘,— the
number of values that appear for the attribute j in the alternative i.
In this equation we consider that every linguistic term that appears
in the over ranked alternatives has a relevance which is inversely
proportional to the number of other values for the same attribute
that appear among the entire set of over ranked alternatives.

To calculate the relevance of a term in the selection we use:

s 1 1 I (6)
RS (t)=5(—+n—]

nv j tv

Here nv; represents the number of values that appear for the
attribute j in the selection, nl the total number of linguistic
attributes, and tv the total number of linguistic values that appear in
the selection. The relevance of a term in the selection is the mean
between the importance of the term among the values that appear
with it in the same attribute and the importance of each linguistic
term that appears in the selection compared with the number of
linguistic attributes.

Finally, after calculating both partial relevancies for all the
terms, the overall relevance R;(t) is calculated as:

R;(t) =R (1)~ RO (1) @)

In conclusion, considering a threshold y to avoid making
changes in the profile with low relevance, it can be deduced that:
e If Rj(t)>y, the preference over term t for the attribute j
needs to be increased (moved to the next term).
e If Rj(t)<y, the preference over term t for the attribute j
needs to be decreased (moved to the previous term).

4 Learning preference functions for numeric
attributes

Although the numeric preference learning approach described in
Section 2 provided an adequate way of learning the ideal value of
preference over a numeric attribute, it was unable to learn all of the
parameters that model the preference function such as the slope or
the width, which were fixed. The new learning method presented in
this section relies on historic data about the user selections to

approximate the preference function of the numeric attributes to the
most adequate one. With this approach, we have a new definition
of the function of preference which now has 5 parameters (left and
right slope, left and right width, and value of preference) instead of
just the value of preference:

m
X =V pref :
l—M If (X < Viprer) ®)
|
Pa(X) 1 if (x= V pref)
|X_Vpref |mr .
1 (x> V)
r

In this expression p,(x) is the preference of the value x of the
attribute a, m, and m, are the function slope values (for the left and
right sides of the triangle, respectively) and A, and A, are the
parameters which define the width of the function (also for the left
and right sides of the triangle, respectively). An example of
graphical representation of a preference function can be seen in
Figure 4, where the left slope is a value under 1, the right slope is a
value over 1, and the left width is greater than the right one.

I

|
m,>]

m, <1

\/;uw - A; wa' V;uw' JrA,

Figure 4. Numeric preference function with 5 parameters

The whole process of adapting the numeric preference function
is depicted in Figure 5.

function PREF-FUNC-ADAPTATION(
V(Vg,...,Vp), //historic of values of past selections
Vorerr //value of maximum preference
Vmin, //minimum numeric value
Vmax, //maximum numeric value
ti, /ftrust interval
s /Iprobability distribution sampling)

begin
B=getBestValues(V, Ve, ti);
PD=calculateProbabilityDistribution(B, Viin, Vmin: S);
A{left,right}=calculateDelta(PD);
m{left,right}=calculateBestSlope(PD, Vg, A);
PreferenceFunction=(A, m, Vyr);
return PreferenceFunction;

end;

Figure 5. Preference function learning algorithm

The first step consists in obtaining the more reliable values from
the historic set of selections. This is done by extracting a
percentage of the values closer to the value of preference (trust
interval), normally of 90%. With that we avoid considering outlier
values. Then a probability distribution function, represented with a
histogram, is calculated with those best values. The sample or

ECAI-12 Workshop on Preference Learning: Problems and Applications in Al 39

discretization step is a parameter, normally around 1% of the
domain range. Delta values are then calculated by observing the
width of the probability distribution. For example, if the first value
different to 0 in the histogram is 3 and the last is 56, and the value
of higher preference (Vo) is 34, Ay would be 31 and A, would be
22. Afterwards, the algorithm generates preference functions with
different combinations of values for the slope values (m) (in the
range from 0 to 4 in steps of 0.2), and compares the distance
between each preference function and the probability distribution.
The function with the lower distance shows the chosen slope.
Finally, the new preference function is built with the new delta and
slope values.

5 Case study: restaurant recommendation

In order to test our new approach to multi-valued attribute
evaluation and numeric preference function learning, we have used
data of the restaurants in Barcelona to implement a RS with the
ability to learn the users’ interests from their selections. In the first
part of this section a description of the data is given. Then, a basic
explanation of the whole recommender and learning algorithm is
given, as well as the preferences setup. Finally, the results of the
evaluation are provided.

5.1 Barcelona restaurants data

The data used in this problem has been collected from the
BenRestaurantes web page?. The data set contains information
about 3000 restaurants of Barcelona evaluated by 5 attributes: 3
categorical (“Type of food”- 15 values, “Atmosphere”- 14 values,
“Special characteristics” — 12 values) and 2 numerical (“Average
price”, “Distance to city center”). One example of register in the
data file is “Fonda Espafia; National, Season cuisine, Traditional;
Classic, For families; Round tables, In a hotel, With video; 45;
0.979”, being “Fonda Espafa” the restaurant name, ‘“National”,
“Season cuisine” and “Traditional” the types of food served,
“Classic” and “For families” the restaurant atmosphere, “Round
tables” and “In a hotel” other important restaurant characteristics,
45€ the average menu price, and 0.979 km the distance to the city
centre.

5.2 Recommendation and adaptation

The set of 3000 restaurants has been divided in blocks of 15
alternatives that are ranked independently, which gives out a total
of 200 different recommendations. An ideal profile was manually
defined and three initial profiles were created randomly. The goal
is to learn the ideal profile starting from these three different
points. In this evaluation the preferences over the categorical
attributes are represented with a linguistic label term set of 7
values, which are “Very Low”, “Low”, “Almost Low”, “Medium”,
“Almost High”, “High” and “Very High”.

The whole process (for each of the three profiles, repeated 200
times) consists in:
1. Ranking a set of 15 alternatives according the current

(initially random) profile.

2. Simulate the selection of the user by choosing the alternative
that fits better the ideal profile.

2 http://www.bcnrestaurantes.com. Last access May 30th, 2012.

3. Extract relevance feedback from the selection (over ranked
alternatives and the selection itself).

4. Decide which changes need to be made to the current profile
and apply them.

Some information about the whole process is stored after each
iteration, including the position of the selected alternative, the
distance between the ideal and current profiles, and the preferences
over linguistic and numeric values.

5.3 Results evaluation

In order to evaluate the results of the new learning techniques, a
distance function has been defined to calculate how different the
profile we are learning is to an ideal profile which represents the
exact preferences of the user. The first step is to calculate the
distance for each attribute, taking into account if it is numeric or
categorical. The distance between numeric attributes is calculated
as

d(n,C,i) =1- pf (Vprerh) ®)

where n is the numerical attribute, ¢ is the current profile (the one
being learned), i is the ideal profile, and py (vpref'n) is the value
of preference of the vy value for the attribute n in i using the
preference function of the same attribute in the profile ¢c. A
distance 0 means that the v, values in both profiles are equal.

The equation to calculate the distance between categorical
attributes is

1 card(l) ‘CoG(plc (v))—COG(D: (Vi))‘
|COG (Smin) —-CoG (Smax)|

dd,c,i) = (10)

card(l) +~

where | is the categorical attribute, card(l) is the cardinality of the
attribute | (i.e., the number of different linguistic values it can
take), CoG(pf (v,))and CoG(p(v,))are the x-coordinate of
the centres of gravity of the fuzzy linguistic labels associated to the
value of preference of v in the profiles ¢ and i, respectively, and
CoG(Spip)and CoG(sy,,) are the centres of gravity of the
minimum and maximum labels of the domain, respectively.
Finally, the distance between two profiles is calculated as

na
D(c,i) :n—ZZd(k,c,i) (11)
k=1

where na is the total number of attributes.

During the three tests (one for each initial random profile) the
distance between the adapting and the ideal profile has been
calculated in each iteration. Figure 6 (continuous line) shows the
average of the three distances. It can be seen that the initial average
distance between the ideal and the adapting profiles is around 0.59.
After 200 iterations it reaches a distance around 0.1. Although 200
iterations may seem a large number, it can also be observed that
with only 50 iterations a very acceptable result of 0.2 is obtained.

To see to what extent the new approach to learn the numeric
preference function explained in Section 4 has improved the result
of our previous work (commented in Section 2), Figure 6 also
compares the results with and without (dashed line) that
functionality. It can be seen how the improvement has been
noticeable (distance improvement of about 0.07).

ECAI-12 Workshop on Preference Learning: Problems and Applications in Al 40

0,6

Non-Adapting
— Adapting

0,54

0,41

0,3+

distance

0,2+

0,1+

D'G i T T T T
0 20 40 60 80

100 120 140 160 180 200
Iterations
Figure 6. Average distance between current and ideal profile

To wrap up the results evaluation, Figure 7 shows in what
position the user selection is being ranked by the RS on each of the
iterations in the first test (the three give similar results). This figure
shows the results in a more intuitive way. Notice that the system is
accurate if the selected alternative is in the first positions of the 15-
items list in each iteration. Many factors can interfere in the
process and make the learning of the exact ideal profile a very hard
task, but if the user selection appears in the first positions, we can
consider that the learning process is working properly. As it can be
observed in Fig.7, after about 50 iterations, the selected alternative
is among the first three ones in 95% of the cases (and the first one
in around 70% of the cases).

15

13 poe

11{ine

Position
~

.I-'. ‘;.‘II.'.' I'
100 120 140 160 180 200

Iterations

0 20 40 60 80

Figure 7. Position of the selected alternative in each iteration (test 1)

6 Conclusions and future work

Two main contributions with respect to our previous work have
been presented in this paper. The first one consists in managing
multi-valued categorical attributes in the alternatives of a RS,
allowing. more expressivity in their representation. The system
considers a single preference for each possible value and
aggregates them to find out the preference over the whole attribute.
The consideration of multi-valued attributes is mandatory when
working with alternatives such as the ones presented in this paper
(e.g. “Type(s) of Food” in a restaurant alternative).

The second contribution, which is learning the numeric
preference function, allows shaping a more expressive and
personalised representation of user preferences over each numeric
attribute, defining a preference function with 5 parameters. This
additional expressivity helped to improve the profile learning
process by reducing the learning error around 7%.

As a future work, two interesting lines can be considered. As
pointed out in Section 3, an aggregation policy can be considered
in the aggregation of the preferences in a single attribute, other
than the use of the common “average” policy. Research can be
made in this area in order to learn the aggregation policy that fits
more the user interests. Another interesting line to consider is to
incorporate information about the numeric preference function in
the distance measure used to evaluate the algorithm since,
currently, just the value of preference is being considered.

ACKNOWLEDGEMENTS

This work has been supported by the Universitat Rovira i Virgili (a
pre-doctoral grant of L. Marin) and the Spanish Ministry of
Science and Innovation (DAMASK project, Data mining
algorithms with semantic knowledge, TIN2009-11005) and the
Spanish Government (Plan E, Spanish Economy and Employment
Stimulation Plan).

REFERENCES

[1] G. Castellano, C. Castiello, D. Dell'Agnello, A. M. Fanelli, C.
Mencar, M. A. Torsello, Learning Fuzzy User Profiles for Resource
Recommendation, International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems 18 (4) (2010), 389-410.

[2] I Garcia, L. Sebastia, E. Onaindia, On the design of individual and
group recommender systems for tourism, Expert Systems with
Applications 38 (6) (2011), 7683-7692.

[3] D. Isern, L. Marin, A. Valls, A. Moreno, The Unbalanced Linguistic
Ordered Weighted Averaging Operator, in: IEEE International
Conference on Fuzzy Systems, FUZZ-1IEEE 2010, |IEEE Computer
Society, Barcelona, Catalonia, 2010, 3063-3070.

[4] G. Jawaheer, M. Szomszor, P. Kostkova, Comparison of Implicit and
Explicit Feedback from an Online Music Recommendation Service,
in: 1st International Workshop on Information Heterogeneity and
Fusion in Recommender Systems, ACM Press, Chicago, US, 2010,
47-51.

[5] T. Joachims, F. Radlinski, Search Engines that Learn from Implicit
Feedback, Computer 40 (8) (2007), 34-40.

[6] L. Marin, D. Isern, A. Moreno, Dynamic adaptation of numerical
attributes in a user profile, International Journal of Innovative
Computing Information and Control (2012).

[7]1 L. Marin, D. Isern, A. Moreno, A. Valls, On-line dynamic adaptation
of fuzzy preferences, Information Sciences doi:
10.1016/j.ins.2011.10.008 (2012).

[8] ™. Montaner, B. Loépez, J. L. de La Rosa, A taxonomy of
recommender agents on the internet, Artificial Intelligence Review
19 (4) (2003), 285-330.

[9] A. Moreno, A. Valls, D. Isern, L. Marin, J. Borras, SigTur/E-
Destination: Ontology-based personalized recommendation of
Tourism and Leisure Activities, Engineering Applications of
Artificial Intelligence doi:10.1016/j.engappai.2012.02.014 (2012).

[10] C. Porcel, A. G. L6pez-Herrera, E. Herrera-Viedma, A recommender
system for research resources based on fuzzy linguistic modeling,
Expert Systems with Applications 36 (3, Part 1) (2009), 5173-5183.

ECAI-12 Workshop on Preference Learning: Problems and Applications in Al 41

Direct Value Learning: a Preference-based Approach to
Reinforcement Learning

David Meunier"), Yutaka Deguchi?, Riad Akrour(!)
Einoshin Suzuki(?), Marc Schoenauer(!), Michele Sebag(!)

Abstract. Learning by imitation, among the most promising tech-
niques for reinforcement learning in complex domains, critically de-
pends on the human designer ability to provide sufficiently many
demonstrations of satisfactory quality.

The approach presented in this paper, referred to as DIVA (Di-
rect Value Learning for Reinforcement Learning), aims at address-
ing both above limitations by exploiting simple experiments. The ap-
proach stems from a straightforward remark: while it is rather easy
to set a robot in a target situation, the quality of its situation will nat-
urally deteriorate upon the action of naive controllers. The demon-
stration of such naive controllers can thus be used to learn directly a
value function, through a preference learning approach. Under some
conditions on the transition model, this value function enables to de-
fine an optimal controller.

The DIVA approach is experimentally demonstrated by teaching
a robot to follow another robot. Importantly, the approach does not
require any robotic simulator to be available, nor does it require any
pattern-recognition primitive (e.g. seeing the other robot) to be pro-
vided.

1 Introduction

Since the early 2000s, significant advances in reinforcement learn-
ing (RL) have been made through using direct expert’s input (inverse
reinforcement learning [18], learning by imitation [10], learning by
demonstration [16]), assuming the expert’s ability to demonstrate
quasi-optimal behaviors and to provide an informed representation.

In 2011, new RL settings based on preference learning and al-
legedly less demanding for the expert have been proposed (more in
section[2)).

In this paper, a new preference-based reinforcement learning
approach called DIVA (Direct Value Learning for Reinforcement
Learning) is proposed. DIVA aims at learning directly the value func-
tion from basic experiments. The approach is illustrated on the sim-
ple problem of teaching a robot to follow another robot. It is shown
that DIVA yields a competent follower controller without requiring
the primitive “I see the other robot* to be either provided, or explic-
itly learned.

2 State of the art

Reinforcement learning is most generally formalized as a Markov
decision process. It involves a state space S, an action space A,
and an upper bounded reward function r defined on the state space
r : § — R. The model of the world is given by the transition func-
tion p(s, a, '), expressing the probability of arriving in state s’ on
making action a in state s under the Markov property; in the deter-
ministic case, the transition function tr : S x A — S gives the

L TAO, CNRS-INRIA-LRI, Université Paris-Sud
2 Dept. Informatics, ISEE, Kyushu University

state t7(s, a) of the agent upon making action a in state s. A policy
7 : (S, A) — R maps each state in S on some action in A with a
given probability. The return of policy is defined as the expectation
of cumulative reward gathered along time when selecting the current
action after 7, where the initial state sg is drawn after some proba-
bility distribution g on S. Denoting ap ~ 7(sp) the random variable
action selected by 7 in state sp, Sh+1 ~ p(Sh, an, s) the state of the
agent at step h + 1 conditionally to being in state s; and selecting
action ay, at step h, and 7,41 the reward collected in sp,+1, then the
policy return is

J(ﬂ”) =E. |:Z 'yhrh|50 ~ q:|
h=0

where v < 1 is a discount factor enforcing the boundedness of the
return, and favoring the reaping of rewards as early as possibly in the
agent lifetime.

The so-called value function V;(s) estimates the expectation of
the cumulative reward gathered by policy m when starting in state s,
recursively given as:

Va(s) =r(s)+7 Z 7(s,a)p(s,a,s V(s

a,s’

Interestingly, from a value function V' can be derived a greedy policy
my, provided the transition function is known: when in state s, select
the action a leading to the state with best expected value:

my(s) = argmax { p(s,a,5)V (s') o
a€A) V(tr(s,a)) deterministic trans.

&)
By construction, 7y, is bound to improve on 7. By learning value
function V* as the maximum over all policies 7 of V

probabilistic trans. }

V*(s) = maxVx(s)

one can thus derive the optimal policy 7* = my«.

The interested reader is referred to [19, 20] for a comprehen-
sive presentation of the main approaches to Reinforcement Learn-
ing, namely value iteration and policy iteration algorithms, building
a sequence of value functions V'* and policies 7; converging to V*
and 7. The bottleneck of estimating the optimal value function is
that all states must be visited sufficiently often, and all actions must
be triggered in any state, in order to enforce the convergence of V*
and 7(V*) toward V* and 7*. For this reason, RL algorithms hardly
scale up when the size of the state and action spaces is large, all the
more so as the state description must encapsulate every information
relevant to action selection in order to enforce the Markov property.

New RL approaches devised to alleviate this bottleneck and based
on preference learning have been proposed in 2011 [11, 2]. [11] is
concerned with the design of the reward function in order to facil-
itate RL; for instance in the medical protocol application domains,

ECAI-12 Workshop on Preference Learning: Problems and Applications in Al 42

how to associate a numerical negative reward to the patient’s death
? The authors thus extend the classification-oriented approach first
proposed by [17] as follows. In a given state s, an action a is as-
sessed by executing the current policy until reaching a terminal state
(rollout). On the basis of these assessments, pairs of actions can be
ranked with regard to state s and policy 7 (@ <s,» a’). These rank-
ing constraints are exploited within a learning-to-rank algorithm (e.g.
RankSVM [13]), yielding a ranking hypothesis hs » : A — R. The
claim is that such action ranking hypotheses are more flexible than
classification hypotheses, aimed at discriminating “the” best actions
from the others conditioned by the current state. In summary, the
ranking hypothesis depends on the policy and the current state, and
operates on the action space.

Quite the contrary, in [2] the ranking hypothesis operates on the
policy space. The motivating application is swarm robotics, facing
two severe issues. Firstly, swarm robotics is hardly compatible with
generative model-based RL approaches; simulator-based approaches
suffer from the supra-linear computational complexity of simula-
tions w.r.t. the number of robots in the swarm (besides the simula-
tion noise). Secondly, swarm robotics hinders the inverse reinforce-
ment learning approach [1, 15], using the expert demonstrations to
learn a reward function. In most cases the swarm expert cannot de-
scribe (let alone demonstrate) the individual robot behavior leading
to the desired swarm behavior (known as the inverse macro-micro
problem [7]). The proposed approach, called PPL (Preference-based
Policy Learning) proceeds along an interactive optimization setting:
the robot(s) demonstrates a behavior, which is ranked by the expert
comparatively to the previous best demonstration. The ranking con-
straints are exploited through a learning-to-rank algorithm, yielding
a ranking hypothesis on the policy demonstrations and thus on the
policy space II (h : II — R). This ranking hypothesis is used as
policy return estimate, casting RL as an optimization problem (find
7, = argmax h(m)). Policy 7}, is demonstrated to the expert, who
ranks it compared to the previous best demonstration, and the process
is iterated. Note that PPL thus faces the same difficulty as interactive
optimization at large [9, 22]: if the expert is presented with too con-
strained a sample of demonstrations, she does not have a chance to
teach her preferences to the system. PPL is thus extended to integrate
an active learning criterion, yielding the APRIL (Active Preference
learning-based Reinforcement Learning) algorithm [3].

3 Overview of D1VA

This section introduces and formalizes the principle of DIVA, and
discusses its strengths and limitations w.r.t. the state of the art.

3.1 Principle

D1VA is rooted in Murphy’s law (Anything that can possibly go
wrong, does). Formally, it posits that when the agent happens to be
in some good situation, its situation tends to deteriorate under most
policies. Let us illustrate this idea on the simple problem of having a
robot following another robot in an open environment. Assume that
the follower robot is initially situated behind the leader robot (Fig. 1,
left, depicts the follower state, given as its camera image). Assume
that both follower and leader robots are equipped with the same sim-
ple Go Ahead controller (same actuator value on the left and right
wheel of both robots). Almost surely, each robot trajectory will devi-
ate from the straight line, due to e.g. the imperfect calibration of the
wheel actuators or different sliding frictions on the ground. Almost
surely, the two robot trajectories will be deviated in a different way.

Therefore, the follower will at some point lose track of the leader
(Fig. 1, right, depicts the follower state after circa 52.7 (+-20.6) time
steps, that is, XX seconds).

Figure 1: Left: The follower robot is initially aligned behind the
leader robot. Right: Both leader and follower robots are operated by
the same Go ahead controller. Due to mechanical drift, the follower
sooner or later loses track of the leader.

The intuition can be summarized as: the follower state was never
as good as in the initial time step; it becomes worse and worse along
time.

3.2 Formalization

The above remarks enable to define a ranking hypothesis on the state
space, as follows. Let us consider K trajectories of the robot follower
noted S ... Sk, where each trajectory S; is defined as a sequence
of states si”, t = 0...T;. A value function is sought as a function V'
mapping the set of states S onto R, satisfying constraints V(sii)) >
V(s{))foralli=1...Kandt=0...T; — 1.

Formally, it is assumed in the following that the state space S is
embedded in R?. A linear value function V* : S — R is defined as

Vi (s) = (@*, s)

where @* € R? is given after the standard learning-to-rank regular-
ized formulation [4]:

o . k i
w' = arg min %HWH% +C>i Zt<t/§T,; éilt)'
st V1I<i<K, 0<t<t <T;)

(w,s”) > (w,s) +1-€l0s €l >0
This quadratic optimization under constraints problem can be solved
with affordable empirical complexity [14]. After Eq. nd pro-
vided that the transition model is known, value function V* derives
a policy 7. Further, by construction any value function derived by
monotonous transformation of V* induces the same policy 7*.

3.3 Discussion

Among the main inspirations of the DIVA approach is TD-Gammon
[21]. TD-Gammon, the first backgammon program to reach a cham-
pion level in the 80s, exploits games generated from self-play to train
a value function along a temporal difference algorithm. The value
function is likewise trained from a set of games, or trajectories S;
described as a sequence of positions si”,t = 0...T;. The dif-
ference is as follows. Firstly, TD-Gammon only imposes the value
for the initial and the final positions, with V(sf)i)) = 1/2 (the ini-
tial position is neutral), and V(s%?) = 1 (respectively 0) if the first
player wins (resp., loses) the game. Secondly, the learning problem

ECAI-12 Workshop on Preference Learning: Problems and Applications in Al 43

Figure 1. An annotated chess game (screen-shot taken from
http://chessbase.com/).

move evaluation: Each move can be annotated with a symbol indi-
cating its quality. Six symbols are commonly used:

e very poor move (??),
e poor move (?),

e speculative move (?!),
e interesting move (! ?),
e good move (!),

e very good move (! !).

position evaluation: Each move can be annotated with a symbol in-
dicating the quality of the position it is leading to:

e white has a decisive advantage (+—),
e white has a moderate advantage (+),
e white has a slight advantage (L),

e equal chances for both sides (=),

e black has a slight advantage (F),

e black has a moderate advantage (),
e black has a decisive advantage (—+),
e the evaluation is unclear ().

time evaluation: Each move can be annotated with a symbol indi-
cating a time constraint that arose at this move. This information
is not used in our experiments.

In addition to annotating games with NAG symbols, annotators
can also add textual comments and move variations to the game, i.e.,
in addition to the moves that have actually been played in the course
of the game, an annotator provides alternative lines of play. Those
are usually suggestions in the form of short move chains that are
leading to more promising states than the move chain used in the
real game. Variations can also have NAG symbols, and may contain
subvariations.

Figure 1 shows an example for an annotated chessgame. The left-
hand side shows the game position after the 13th move of white.
Here, black is in a difficult position after the mistake he made.
(12...%¢67). From the suggested moves, 13...a5?! is the best, but

even here white has the upper hand at the end of the variation
(18.Eecl!+), as well as in the end of the suggested move chain
starting with 13...%xc2 . On the other hand, 13...9xc2?? is an even
worse choice, ending in a position that is clearly lost for black (+—).

It is important to note that this feedback is of qualitative nature,
i.e., it is not clear what the expected reward is in terms of, e.g., per-
centage of won games from a position with evaluation +. However,
it is clear that positions with evaluation * are preferable to positions
with evaluation £ or worse (=, T, T, —+).

Also note that the feedback for positions typically applies to the
entire sequence of moves that has been played up to reaching this
position (a trajectory in reinforcement learning terminology). The
qualitative position evaluations may be viewed as providing an eval-
uation of the trajectory that lead to this particular position, whereas
the qualitative move evaluations may be viewed as evaluations of the
expected value of a trajectory that starts at this point.

However, even though there is a certain correlation between these
two types of annotations (good moves tend to lead to better positions
and bad moves tend to lead to worse positions), they are not inter-
changable. A very good move may be the only move that saves the
player from imminent doom, but must not necessarily lead to a very
good position. Conversely, a bad move may be a move that misses
a chance to mate the opponent right away, but the resulting position
may still be good for the player.

3 Learning an Evaluation Function from
Preferences

For learning the mentioned SVM model, it is required to formulate
the task as a binary classification problem. We are showing how this
can be done by using preference learning.

3.1 Preference Learning

Preference learning is about inducing predictive preference mod-
els from empirical data. This establishes a connection between ma-
chine learning and research fields like preference modeling or deci-
sion making. Especially “learning to rank by preferences” is deemed
promising by the community. Preference learning can be applied to
label ranking, by defining preferences over a set of labels concern-
ing a specific set of objects [25]. But it is also possible to define
preference directly over a set of objects, for creating a ranking of
those objects [14]. Preferences themselves are constraints that can
be violated, which leads to higher flexibility concerning the solv-
ing process, opposed to hard constraints. These constraints can be
described via a utility function or preference relations. [12] We are
only considering preference relations in this work, because they can
be represented in a qualitative manner.

Object Ranking is about learning how to order a subset of objects
out of a (potentially infinite) reference set Z. Those objects z € Z
are usually given as a vector of attribute/value pairs, but this is no
necessary property. The trainings data is given in the form of rank-
ings, which is decomposed into a finite set of pairwise preferences
z; > z;j. The object ranker is then learning a ranking function f(-)
which returns a (ranked) permutation of a given object set. [12]

3.2 States and Actions

In chess, we are searching for the best action @ € A for a state s €
S. For game tree exploration concerns or suboptimal play, it can also
be required to determine the expected quality of an suboptimal action

ECAI-12 Workshop on Preference Learning: Problems and Applications in Al

a’ € A. When defining this quality in a relative way, as opposed
to an absolute value, we are searching for a rank. Because of the
high amount of legal states in chess (roughly 10°° states [2]), it is
not feasible to learn those ranking functions directly. Considering the
chess transition function f : Sx As — Ss, with Sg C S as the set of
states that can be reached from s by an action @ € A possible in s,
we can rewrite the problem as the search for a ranking for all s € S¢
. This ranking is also not dependent on the current state s, because
the state/action history is not relevant for a chess state (excluding the
fifty-moves and the threefold repetition draw rules). This reduces the
problem to a object ranking problem over all s € S.

3.3 SVM-based ranking

Following [16], we can use state preferences of the form s; > s; for
training the SVMRANK ranking support vector machine proposed
by [13].% Its key idea is to reinterpret the preference statements as
constraints on the evaluation function, i.e.,

8; > 8; < h(sz) > h(Sj).

If the function A is a linear, i.e., it is a weighted sum
h(s) = wy- f(s)
f

of features f, the latter part is equivalent to
> wyp- f(si—sy)

f
D wr-(f(si) = f(s5) >0

f

h(si — s;)

Thus, essentially, the training of the ranking SVM corresponds to the
training of a classification SVM on the pairwise differences s; — s;
between positions s; and s;. The pairwise ranking information can
thus be converted to binary training data in the form of a feature

distance vector A with the preference relation r € {<,>} as the

binary class vector.

4 Generating Preference Data from Game
Annotations

The training data that are needed for an object ranking algorithm
like SVMRANK can be generated from game annotations of the type
discussed in Section 2. For our first experiments, we only focused on
move preferences, and ignored state preferences.

Our algorithm for generating preferences from move annotations
is sketched in Algorithm 1: a given list of games G in PGN format
is parsed, and triplets (s,a,n),n € Ng o with N o being the list
of NAG in (s, a) are created for each occurrences of a NAG sym-
bol. A state is represented by its Forsyth-Edwards Notation (FEN).
It is a serialized representation of the game board, capturing all data
that is required to uniquely identify a chess state [8]. Actions are
saved in the Long Algebraic Notation (LAN). After collecting this
data for every game, all triples containing the same FEN state are
compared. The NAG symbols are checked against a static relation
list and a pairwise preference relation for the attached actions is cre-
ated, if possible. The static relation table contains entries like ny:??
n2:!? — ny < na. In rare cases, we may get multiple conflicting
annotations for a pair (s, a), which are then ignored.

2 Available from http://svmlight . joachims.org.

Algorithm 1 Preference Generation
Require: list of games G, initial position s

1: triples < 0, prefs < 0, seen < ()

2: forall g € G do

3 S < So

4: forall (a, Ns4) € g do

5: s < MOVE(s, a)

6 for all n € N, do

7 triples < triples U {(s,a,n)}
8 seen + seen U {s}

9 end for

10: end for

11: end for

12: for all s’ € seen do

13: forall N ,, N, .+ € triples with a # a’ do

s’,ar

14: 7 4= RELATION(N,s o, N/ o7)

15: if r # & then

16: s1 < MOVE(s', a), s2 + MOVE(s’,a’)
17: prefs < prefsU{(s1,s2,7)}

18: end if

19: end for

20: end for

21: return prefs

When applying this algorithm to the example given in
Figure 1, it would yield the following action preferences:
(s, Wxc2 = Hixc2),(s,a5 = Dxc2),(s,a5 = Wxc2) with s be-
ing the state shown in the example.

In a last step, action preferences (s,a1 > az) are converted to
state preferences by applying a1 and as to s, resulting in state pref-
erences S1 >~ S, where s; = MOVE(s, ai). A practical problem
is, that annotated moves are usually not leading to a stable state to
which the qualitative evaluation can be directly applied. For exam-
ple, in the middle of an exchange sequence, the first player will be
behind by one piece after the initial move but may gain a significant
advantage after a short chain of moves. For this reason, preferences
are not applied to the positions s;, but to quiet positions that result
from a fixed-depth search starting in s; (we use depth 7), followed by
a quiescence search. The positions s; at the leaves of these searches
are then used in the state preferences.

Additionally, most variations added to the PGN data are also move
chains and not single moves, hence we are applying the suggested
move chain to the state and not only the first, single move. This is
implemented in step 16 of algorithm 1.

5 Experimental Setup

For showing the usefulness of preference data, we are training a
SVM model based on preference data generated from annotated
chess games (Section 5.1), and employ it in the strong open source
chess engine CUCKOO (Section 5.2). All states are represented by the
heuristic features created by the position evaluation function. Train-
ing a linear kernel model allows us to simply extract the feature
weights for the linear sum function. The quality of the preferences
can now be analyzed by comparing the playing strength of our re-
weighted chess engine.

ECAI-12 Workshop on Preference Learning: Problems and Applications in Al 55

Feature Type # Features Description

material difference 1 Difference in the sum of all piece values per player.

piece square 6 Position dependent piece values by static piece/square tables. A single value for every piece type.

pawn bonus 1 Bonus for pawns that have passed the enemy pawn line , while also considering its distance to the enemy
king.

trade bonus 2 Bonus for following the “when ahead trade pieces, when behind trade pawns” rules.

castle bonus 1 Evaluates the castling possibility.

rook bonus 1 Bonus for rooks on (half-) open files.

bishops scores 2 Evaluating the bishops position by attack possibilities, if trapped and relative positioning.

threat bonus 1 Difference in the sum of all piece values under attack.

king safety 1 Evaluates the kings position relative to the rooks.

Table 1. Features used in the linear evaluation function of the CUCKOO chess engine.

5.1 ChessBase

As a data source we are using the Mega Database 2012, provided by
Chessbase.’> To the authors’ knowledge, it is the largest database of
professionally annotated chess games available. The annotations are
commonly, but not exclusively provided by chess grandmasters. In
this first study, we only considered action preferences, and ignored
state preferences, mostly because of complexity considerations.

In the more than 5 million games contained in the database,
we identified 86,767 annotated games with 1.67 million annotated
moves in total. 343,634 NAG symbols occurred pairwise concern-
ing the same state, but different moves. Out of these, the preference
generation process yielded 271,925 preferences with 190,143 being
unambiguous and not equal. The rest are incomparable symbol pairs,
and were ignored in our data generation process.

5.2 CucKoO Chess Engine

We used the CUCKOO chess engine* for our experiments, because
of its combination of high playing strength® and good modifiability.
It facilitates BitBoards [19, 1] as state representation and NegaScout
[18] as search algorithm.

Most state of the art chess engines are using a heuristic position
evaluation function, while searching for the best, currently reach-
able position with enhanced Alpha-Beta search algorithms like Ne-
gaScout. For performance reasons, evaluation functions are com-
monly linear sums over abstract, manually constructed features. Usu-
ally, features like material difference or usefulness of pieces in their
current position are used. Table 1 shows the 16 features shown by
CUCKO0O. We used these features for describing a state.

The Cuckoo0 Chess Engine was used in a single thread configu-
ration. All experiments haven been executed on systems with 2 cores
or more, ensuring independence of the available computing power
for each player.

5.3 Training Data

In our experimental setup, we are creating the object preferences as
described in Section 4. The pairwise preference data is used as train-
ing data for SVMRANK, which is an optimized implementation of
the SVM based ranker described in 2.4, which can handle pairwise

3 http://www.chessbase.com/
4http://web.comhem.se/petero2home/ javachess/
5http://www.computerchess.org.uk/ccrl/

preference data directly [13]. The feature weights can now be ex-
tracted out of the SVMRANK model and be applied to the CUCKOO
chess engine.

The features have not been standardized or normalized, because
they are already internally normalized to a pico-pawn scale, hence
no significant improvement in classification accuracy was expected.
This was also confirmed in experiments.

Annotators can disagree concerning the exact quality of a move,
but the same relative outcome is expected when comparing two
moves. E.g. an annotator may use ni:? instead of ni:??, but not
ny:! ! if the consensus is n; < no, na:! 2. Tests confirmed the ex-
pected low amount of directly contradicting preferences (< 0.2%),
but it is still possible for subsets to indicate a different valuation of
features.

We created 6 different engines, based upon different training set
sizes. 5%, 10%, 25%, 50%, 75% and 100% randomly sampled ele-
ments of the available preference data have been used to create the
different engines. The results have been generated by averaging over
three all-against-all tourneys, including the player with the original
feature weighting as upper bound and a random player as baseline.
The random engine is picking new random weights for each posi-
tion evaluation. The distribution for those weights is a uniform distri-
bution, bounded by the min/max values observed within all learned
SVMRANK models. Each pairing played 100 games with a Smin
timeframe and no increments.

5.4 Evaluation

All results are reported in terms of Elo ratings [9], which is the com-
monly used rating system for rating chess players. It not only consid-
ers the absolute percentage of won games, but also takes the strength
of the opponent into account. A rating difference of a 100 points ap-
proximately means that the stronger player has an expected win rate
of 5/8. It also enables the reporting of upper and lower bounds for the
playing strength of each player. For calculating the Elo values, a base
Elo of 2600 was used, because this it the rating for the Cuckoo Chess
Engine as reported by the Computer Chess Rating List®. It should
be noted that computer engine Elo ratings are not directly compa-
rable to human Elo ratings, because they are typically estimated on
independent player pools, and thus only reflect relative strengths.

6 http://www.computerchess.org.uk/ccrl/

ECAI-12 Workshop on Preference Learning: Problems and Applications in Al 56

6 Results
6.1 Predictive Accuracy

We first compared the predictive accuracy of different classifiers on
the binary classification problem of learning a preference relation
from the collected preference set. The binary classification accuracy
a can be compared to the average amount of swapped pairs over all
pairs metric e of the original ranking problem by a = 1 — e. The
Weka’ implementation of all classifiers was used, if not stated other-
wise.

Table 2 shows that multilayer perceptrons and random forests
yielded the best results, whereas LIBLINEAR and SVMRANK per-
formed the worst. This seems to indicate that a non-linear combina-
tion of the base features is able to yield a better performance than the
linear combination that is used in the chess program.

We can also see the performance of the original position evalu-
ation function of CUCKOO, which is a linear function that assigns
a uniform weight to all features. IT is somewhat higher than the
trained linear functions, but considerably below the best non-linear
functions.

Classifier Accuracy
MULTILAYER PERCEPTRON [5] 0.6871
RANDOM FOREST [6] 0.6864
NAIVE BAYES TREE [15] 0.6799
J48 [17] 0.6719
PEGASOS [20] 0.6651
LIBLINEAR3[10] 0.6521
SVMRANK’[13] 0.6505
CUCKOO 0.6620

Table 2. Comparison of the predictive performance of different classifiers
and the CUCKOO chess engine (10-fold CV).

6.2 Playing Strength

For evaluating the playing strength we were limited to using a lin-
ear evaluation function because only those could be easily plugged
into the chess program. We chose evaluation functions learned by
SVMRANK. Figure 2 shows the development of the rating over the
percentage of used preferences in the training data. It is clearly rec-
ognizable in that an increase in the amount of used preference data
is leading to an improved chess engine, which we take as evidence
that the game annotations provide useful information for learning an
evaluation function. The playing strength is clearly above the random
baseline, which reached an average Elo rating of 2332 + 32, but well
below the original player and its average Elo rating of 2966 + 43.

6.3 Stability

The player that was trained on 5% of the data is a clear outlier, re-
sulting from the comparably high variance in the training data at this
point. The variance of the feature weights at this setting is shown in
Figure 3.

However, most features are showing convergence and a mostly sta-
ble average value. Figure 4 shows the development of the feature

"http://www.cs.waikato.ac.nz/ml/weka/

8 http://www.csie.ntu.edu.tw/ cjlin/liblinear/

9http://www.cs.cornell.edu/people/tj/svm_light/svm_
rank.html

2640

2620 |

2600 |-
Q 2580 |
w

2560

T

2540 -

2520 . .
0 20 40 60 80 100

% preferences

Figure 2. Learning curve, measured in Elo rating.

values (average, standard deviation and min/max values) for all fea-
tures. The 10 features in the left and the middle graph are quite sta-
ble, whereas the features in the right graph are rather unstable. For
the features castleBonus and bishopB, a possible explanation could
be the sparsity of these values. The feature value difference for these
values is 0 in 84.6% and 99.7%, respectively, of all training exam-
ples.

7 Conclusion

This paper presented the results of a preliminary study that uses ex-
pert feedback in the form of game annotations for the automated
construction of an evaluation function for the game of chess. It
was shown how annotated chess games can be used for the cre-
ation of preference data. This is especially interesting because of the

|

|

i
1

1

bishopsSquare queensSquare rooksSquare castleBonus

Feature

bishopB

Figure 3. Learned weight for the 5 most variant features, based on 10
different 5% samplings

ECAI-12 Workshop on Preference Learning: Problems and Applications in Al 57

bishopsSquare
queensSquare

tradeBehind =
ro0kBonus 215
H

weight

kingsSquare
pawnsSquare

% preferences

% preferences

5 10 25 50 75 100
% preferences

50 75 100

Figure 4. Average and variance for the feature weights, averaged over 10 samples per subset size. Weights are scaled to materialDifference= 1.

widespread availability of annotated chess games, which enables the
creation of large-scale datasets.

Following the approach shown by Paulsen et al [16], the prefer-
ences have been successfully used to learn the feature weights for
an position evaluation function. It can be observed, that the playing
strength of the chess engine is scaling with the amount of trainings
data. This is a first step towards using qualitative feedback in game
playing scenarios.

However, alhthough we can observe a correlation with the amount
of seen preferences and the playing strength of the learned players,
their overall strength was not able to reach the strength of the orig-
inal player. We still have to investigate the reasons for this, but it
should be noted that the original feature weighting is outperforming
the learned weights. Thus, SVMRANK was only able to find subop-
timal feature weights.

Moreover, in this work we have essentially ignored state pref-
erences and focused on action preferences. The reason for this
was pragmatic, because action preferences relate to a single state,
whereas state preferences can be widely compared, even across mul-
tiple games. For example, every position evaluated with +— can be
considered to be better than every position evaluated with =, all of
which can, in turn, be considered to be preferred over positions that
are evaluated with —+. This approach gives rise to a vast number of
preferences. One could consider to only apply this to positions of the
same game, because different annotators may have a different cali-
bration of the used symbols. This would also reduce the complexity.
These issues are currently under investigation.

REFERENCES

[1] G. M. Adel’son-Vel’skii, V. L. Arlazarov, A. R. Bitman, A. A. Zhiv-
otovskii, and A. V. Uskov, ‘Programming a computer to play chess’,
Russian Mathematical Surveys, 25(2), 221, (1970).

[2] V. Allis, Searching for Solutions in Games and Artificial Intelligence,
Ph.D. dissertation, University of Limburg, The Netherlands, 1994.

[3] J. Baxter, A. Tridgell, and L. Weaver, ‘Learning to play chess using
temporal differences’, Machine Learning, 40(3), 243-263, (September
2000).

[4] D.F Beal and M. C. Smith, ‘Temporal difference learning applied to
game playing and the results of application to Shogi’, Theoretical Com-
puter Science, 252(1-2), 105-119, (2001). Special Issue on Papers from
the Computers and Games 1998 Conference.

[5] C. M. Bishop, Neural Networks for Pattern Recognition, Clarendon
Press, Oxford, UK, 1995.

[6] L.Breiman, ‘Random forests’, Machine Learning, 45(1), 5-32, (2001).

[7]1 S. Droste and J. Fiirnkranz, ‘Learning the piece values for three chess
variants’, International Computer Games Association Journal, 31(4),
209-233, (2008).

[8] S.J. Edwards. Portable game notation, 1994. accessed on 14.06.2012.

[9]1 A. E. Elo, The Rating of Chessplayers, Past and Present, Arco, New
York, 2nd edn., 1978.

[10] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, ‘Li-
blinear: A library for large linear classification’, Journal of Machine
Learning Research, 9, 1871-1874, (2008).

[11] J. Fiirnkranz, ‘Machine learning in computer chess: The next genera-
tion’, International Computer Chess Association Journal, 19(3), 147—
161, (1996).

[12] J. Fiirnkranz and E. Hiillermeier (eds.), Preference Learning, Springer-
Verlag, 2010.

[13] T. Joachims, ‘Optimizing search engines using clickthrough data’, in
Proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-02), pp. 133-142. ACM
Press, (2002).

[14] T. Kamishima, H. Kazawa, and S. Akaho, ‘A survey and empirical com-
parison of object ranking methods’, In Fiirnkranz and Hiillermeier [12],
181-201.

[15] R. Kohavi, ‘Scaling up the accuracy of naive-bayes classifiers: a
decision-tree hybrid’, in Proceedings of the 2nd International Confer-
ence On Knowledge Discovery And Data Mining, pp. 202-207. AAAI
Press, (1996).

[16] P. Paulsen and J. Fiirnkranz, ‘A moderately successful attempt to train
chess evaluation functions of different strengths’. In C. Thurau, K.
Driessens, and O. Missura (eds.) Proceedings of the ICML-10 Work-
shop on Machine Learning and Games, Haifa, Israel, (2010).

[17] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauf-
mann, San Mateo, CA, 1993.

[18] A. Reinefeld, ‘An improvement to the scout tree-search algorithm’, In-
ternational Computer Chess Association Journal, 6(4), 4-14, (Decem-
ber 1983).

[19] A. L. Samuel, ‘Some studies in machine learning using the game of
checkers’, IBM Journal on Research and Development, 3, 210-229,
(1959).

[20] Y. Singer and N. Srebro, ‘Pegasos: Primal estimated sub-gradient solver
for SVM’, In Z. Ghahramani (ed.) Proceedings of the 24th International
Conference on Machine Learning (ICML-07), pp. 807-814, (2007).

[21] S.S. Skiena, ‘An overview of machine learning in computer chess’, In-
ternational Computer Chess Association Journal, 9(1), 20-28, (1986).

[22] R. S. Sutton, ‘Learning to predict by the methods of temporal differ-
ences’, Machine Learning, 3, 9—44, (1988).

[23] G. Tesauro, ‘Practical issues in temporal difference learning’, Machine
Learning, 8, 257-278, (1992).

[24] G. Tesauro, ‘Programming backgammon using self-teaching neural
nets’, Artificial Intelligence, 134(1-2), 181-199, (January 2002). Spe-
cial Issue on Games, Computers and Artificial Intelligence.

[25] S. Vembu and T. Girtner, ‘Label ranking algorithms: A survey’, In
Fiirnkranz and Hiillermeier [12], 45-64.

ECAI-12 Workshop on Preference Learning: Problems and Applications in Al 58

