
3.2 Preference learning on multi-valued 
categorical attributes 

The linguistic algorithm used to adapt categorical preferences 

explained in Section 2 needs some improvements to be able to 

manage lists of values. When single-valued attributes were 

considered, the user selection pointed directly towards the value 

the user liked for that attribute. Now, however, we cannot be sure 

which one/s of the values listed in the attribute is/are the one/s of 

interest for the user. That is the reason why it has been necessary to 

design a “relevance function” which indicates how relevant is a 

value found among the over ranked alternatives or in the selected 

alternative. Relevance is measured in a [0,1] scale, with 1 meaning 

maximum relevance. To calculate how relevant a term t of the 

attribute j is among the over ranked alternatives we use this 

expression (the relevance value is 0 if it does not appear in the over 

ranked alternatives): 

 

    (5) 
 

 

Here, no represents the number of over ranked alternatives, nt 

the number of over ranked alternatives where t appears, and nvi
j the 

number of values that appear for the attribute j in the alternative i. 

In this equation we consider that every linguistic term that appears 

in the over ranked alternatives has a relevance which is inversely 

proportional to the number of other values for the same attribute 

that appear among the entire set of over ranked alternatives.  

To calculate the relevance of a term in the selection we use: 

  

    (6) 

 

 

Here nvj represents the number of values that appear for the 

attribute j in the selection, nl the total number of linguistic 

attributes, and tv the total number of linguistic values that appear in 

the selection. The relevance of a term in the selection is the mean 

between the importance of the term among the values that appear 

with it in the same attribute and the importance of each linguistic 

term that appears in the selection compared with the number of 

linguistic attributes. 

Finally, after calculating both partial relevancies for all the 

terms, the overall relevance Rj(t) is calculated as:  

  (7) 

 

In conclusion, considering a threshold γ to avoid making 

changes in the profile with low relevance, it can be deduced that: 

 If Rj(t)>γ, the preference over term t for the attribute j 

needs to be increased (moved to the next term). 

 If Rj(t)<γ, the preference over term t for the attribute j 

needs to be decreased (moved to the previous term). 

4 Learning preference functions for numeric 
attributes 

Although the numeric preference learning approach described in 

Section 2 provided an adequate way of learning the ideal value of 

preference over a numeric attribute, it was unable to learn all of the 

parameters that model the preference function such as the slope or 

the width, which were fixed. The new learning method presented in 

this section relies on historic data about the user selections to 

approximate the preference function of the numeric attributes to the 

most adequate one. With this approach, we have a new definition 

of the function of preference which now has 5 parameters (left and 

right slope, left and right width, and value of preference) instead of 

just the value of preference: 

 

 

 

(8) 

 

 

 

 

 

 

In this expression pa(x) is the preference of the value x of the 

attribute a, ml and mr are the function slope values (for the left and 

right sides of the triangle, respectively) and l and r are the 

parameters which define the width of the function  (also for the left 

and right sides of the triangle, respectively). An example of 

graphical representation of a preference function can be seen in 

Figure 4, where the left slope is a value under 1, the right slope is a 

value over 1, and the left width is greater than the right one. 

 

 

 

 

 

 

 

 

 

Figure 4. Numeric preference function with 5 parameters 

 

The whole process of adapting the numeric preference function 

is depicted in Figure 5.  

 

function PREF-FUNC-ADAPTATION( 

V(v0,…,vn), //historic of values of past selections 

vpref,  //value of maximum preference 

vmin,  //minimum numeric value 

vmax,  //maximum numeric value 

ti,  //trust interval 

s //probability distribution sampling) 

begin 

B=getBestValues(V, vpref, ti); 

PD=calculateProbabilityDistribution(B, vmin, vmin, s); 

∆{left,right}=calculateDelta(PD); 

m{left,right}=calculateBestSlope(PD, vpref, ∆); 

PreferenceFunction=(∆, m, vpref); 

return PreferenceFunction; 

end;  

 

Figure 5. Preference function learning algorithm 

 

The first step consists in obtaining the more reliable values from 

the historic set of selections. This is done by extracting a 

percentage of the values closer to the value of preference (trust 

interval), normally of 90%. With that we avoid considering outlier 

values. Then a probability distribution function, represented with a 

histogram, is calculated with those best values. The sample or 
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discretization step is a parameter, normally around 1% of the 

domain range. Delta values are then calculated by observing the 

width of the probability distribution. For example, if the first value 

different to 0 in the histogram is 3 and the last is 56, and the value 

of higher preference (vpref) is 34, ∆l would be 31 and ∆r would be 

22. Afterwards, the algorithm generates preference functions with 

different combinations of values for the slope values (m) (in the 

range from 0 to 4 in steps of 0.2), and compares the distance 

between each preference function and the probability distribution. 

The function with the lower distance shows the chosen slope. 

Finally, the new preference function is built with the new delta and 

slope values.  

5 Case study: restaurant recommendation 

In order to test our new approach to multi-valued attribute 

evaluation and numeric preference function learning, we have used 

data of the restaurants in Barcelona to implement a RS with the 

ability to learn the users’ interests from their selections. In the first 

part of this section a description of the data is given. Then, a basic 

explanation of the whole recommender and learning algorithm is 

given, as well as the preferences setup. Finally, the results of the 

evaluation are provided. 

5.1 Barcelona restaurants data 

The data used in this problem has been collected from the 

BcnRestaurantes web page2. The data set contains information 

about 3000 restaurants of Barcelona evaluated by 5 attributes: 3 

categorical (“Type of food”- 15 values, “Atmosphere”- 14 values, 

“Special characteristics” – 12 values) and 2 numerical (“Average 

price”, “Distance to city center”). One example of register in the 

data file is “Fonda España; National, Season cuisine, Traditional; 

Classic, For families; Round tables, In a hotel, With video; 45; 

0.979”, being “Fonda España” the restaurant name, “National”, 

“Season cuisine” and “Traditional” the types of food served, 

“Classic” and “For families” the restaurant atmosphere, “Round 

tables” and “In a hotel” other important restaurant characteristics, 

45€ the average menu price, and 0.979 km the distance to the city 

centre.  

5.2 Recommendation and adaptation 

The set of 3000 restaurants has been divided in blocks of 15 

alternatives that are ranked independently, which gives out a total 

of 200 different recommendations. An ideal profile was manually 

defined and three initial profiles were created randomly. The goal 

is to learn the ideal profile starting from these three different 

points. In this evaluation the preferences over the categorical 

attributes are represented with a linguistic label term set of 7 

values, which are “Very Low”, “Low”, “Almost Low”, “Medium”, 

“Almost High”, “High” and “Very High”.  

The whole process (for each of the three profiles, repeated 200 

times) consists in: 

1. Ranking a set of 15 alternatives according the current 

(initially random) profile. 

2. Simulate the selection of the user by choosing the alternative 

that fits better the ideal profile. 

                                                                 
2 http://www.bcnrestaurantes.com. Last access May 30th, 2012. 

3. Extract relevance feedback from the selection (over ranked 

alternatives and the selection itself). 

4. Decide which changes need to be made to the current profile 

and apply them. 

Some information about the whole process is stored after each 

iteration, including the position of the selected alternative, the 

distance between the ideal and current profiles, and the preferences 

over linguistic and numeric values. 

5.3 Results evaluation 

In order to evaluate the results of the new learning techniques, a 

distance function has been defined to calculate how different the 

profile we are learning is to an ideal profile which represents the 

exact preferences of the user. The first step is to calculate the 

distance for each attribute, taking into account if it is numeric or 

categorical. The distance between numeric attributes is calculated 

as 

    (9) 
 

where n is the numerical attribute, c is the current profile (the one 

being learned), i is the ideal profile, and ( )c i
n pref np v  is the value 

of preference of the vpref value for the attribute n in i using the 

preference function of the same attribute in the profile c. A 

distance 0 means that the vpref values in both profiles are equal. 

The equation to calculate the distance between categorical 

attributes is 

 

(10) 

 

 

where l is the categorical attribute, card(l) is the cardinality of the 

attribute l (i.e., the number of different linguistic values it can 

take), ( ( ))c
l kCoG p v and ( ( ))i

l kCoG p v are the x-coordinate of 

the centres of gravity of the fuzzy linguistic labels associated to the 

value of preference of vk in the profiles c and i, respectively, and 

min( )CoG s and max( )CoG s  are the centres of gravity of the 

minimum and maximum labels of the domain, respectively. 

Finally, the distance between two profiles is calculated as 

 

(11) 

 

 

where na is the total number of attributes. 

During the three tests (one for each initial random profile) the 

distance between the adapting and the ideal profile has been 

calculated in each iteration. Figure 6 (continuous line) shows the 

average of the three distances. It can be seen that the initial average 

distance between the ideal and the adapting profiles is around 0.59. 

After 200 iterations it reaches a distance around 0.1. Although 200 

iterations may seem a large number, it can also be observed that 

with only 50 iterations a very acceptable result of 0.2 is obtained. 

To see to what extent the new approach to learn the numeric 

preference function explained in Section 4 has improved the result 

of our previous work (commented in Section 2), Figure 6 also 

compares the results with and without (dashed line) that 

functionality. It can be seen how the improvement has been 

noticeable (distance improvement of about 0.07). 
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Figure 6. Average distance between current and ideal profile 

 

To wrap up the results evaluation, Figure 7 shows in what 

position the user selection is being ranked by the RS on each of the 

iterations in the first test (the three give similar results). This figure 

shows the results in a more intuitive way. Notice that the system is 

accurate if the selected alternative is in the first positions of the 15-

items list in each iteration. Many factors can interfere in the 

process and make the learning of the exact ideal profile a very hard 

task, but if the user selection appears in the first positions, we can 

consider that the learning process is working properly. As it can be 

observed in Fig.7, after about 50 iterations, the selected alternative 

is among the first three ones in 95% of the cases (and the first one 

in around 70% of the cases). 

Figure 7. Position of the selected alternative in each iteration (test 1) 

6 Conclusions and future work 

Two main contributions with respect to our previous work have 

been presented in this paper. The first one consists in managing 

multi-valued categorical attributes in the alternatives of a RS, 

allowing. more expressivity in their representation. The system 

considers a single preference for each possible value and 

aggregates them to find out the preference over the whole attribute. 

The consideration of multi-valued attributes is mandatory when 

working with alternatives such as the ones presented in this paper 

(e.g. “Type(s) of Food” in a restaurant alternative). 

The second contribution, which is learning the numeric 

preference function, allows shaping a more expressive and 

personalised representation of user preferences over each numeric 

attribute, defining a preference function with 5 parameters. This 

additional expressivity helped to improve the profile learning 

process by reducing the learning error around 7%. 

As a future work, two interesting lines can be considered. As 

pointed out in Section 3, an aggregation policy can be considered 

in the aggregation of the preferences in a single attribute, other 

than the use of the common “average” policy. Research can be 

made in this area in order to learn the aggregation policy that fits 

more the user interests. Another interesting line to consider is to 

incorporate information about the numeric preference function in 

the distance measure used to evaluate the algorithm since, 

currently, just the value of preference is being considered. 
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Direct Value Learning: a Preference-based Approach to
Reinforcement Learning

David Meunier(1), Yutaka Deguchi(2), Riad Akrour(1)

Einoshin Suzuki(2), Marc Schoenauer(1), Michele Sebag(1)

Abstract. Learning by imitation, among the most promising tech-

niques for reinforcement learning in complex domains, critically de-

pends on the human designer ability to provide sufficiently many

demonstrations of satisfactory quality.

The approach presented in this paper, referred to as DIVA (Di-

rect Value Learning for Reinforcement Learning), aims at address-

ing both above limitations by exploiting simple experiments. The ap-

proach stems from a straightforward remark: while it is rather easy

to set a robot in a target situation, the quality of its situation will nat-

urally deteriorate upon the action of naive controllers. The demon-

stration of such naive controllers can thus be used to learn directly a

value function, through a preference learning approach. Under some

conditions on the transition model, this value function enables to de-

fine an optimal controller.

The DIVA approach is experimentally demonstrated by teaching

a robot to follow another robot. Importantly, the approach does not

require any robotic simulator to be available, nor does it require any

pattern-recognition primitive (e.g. seeing the other robot) to be pro-

vided.

1 Introduction

Since the early 2000s, significant advances in reinforcement learn-

ing (RL) have been made through using direct expert’s input (inverse

reinforcement learning [18], learning by imitation [10], learning by

demonstration [16]), assuming the expert’s ability to demonstrate

quasi-optimal behaviors and to provide an informed representation.

In 2011, new RL settings based on preference learning and al-

legedly less demanding for the expert have been proposed (more in

section 2).

In this paper, a new preference-based reinforcement learning

approach called DIVA (Direct Value Learning for Reinforcement

Learning) is proposed. DIVA aims at learning directly the value func-

tion from basic experiments. The approach is illustrated on the sim-

ple problem of teaching a robot to follow another robot. It is shown

that DIVA yields a competent follower controller without requiring

the primitive “I see the other robot“ to be either provided, or explic-

itly learned.

2 State of the art

Reinforcement learning is most generally formalized as a Markov

decision process. It involves a state space S, an action space A,

and an upper bounded reward function r defined on the state space

r : S 7→ R. The model of the world is given by the transition func-

tion p(s, a, s′), expressing the probability of arriving in state s′ on

making action a in state s under the Markov property; in the deter-

ministic case, the transition function tr : S × A 7→ S gives the

1 TAO, CNRS-INRIA-LRI, Université Paris-Sud
2 Dept. Informatics, ISEE, Kyushu University

state tr(s, a) of the agent upon making action a in state s. A policy

π : (S,A) 7→ R maps each state in S on some action in A with a

given probability. The return of policy π is defined as the expectation

of cumulative reward gathered along time when selecting the current

action after π, where the initial state s0 is drawn after some proba-

bility distribution q on S. Denoting ah ∼ π(sh) the random variable

action selected by π in state sh, sh+1 ∼ p(sh, ah, s) the state of the

agent at step h + 1 conditionally to being in state sh and selecting

action ah at step h, and rh+1 the reward collected in sh+1, then the

policy return is

J(π) = IEπ

[
∞∑

h=0

γhrh|s0 ∼ q

]

where γ < 1 is a discount factor enforcing the boundedness of the

return, and favoring the reaping of rewards as early as possibly in the

agent lifetime.

The so-called value function Vπ(s) estimates the expectation of

the cumulative reward gathered by policy π when starting in state s,

recursively given as:

Vπ(s) = r(s) + γ
∑

a,s′

π(s, a)p(s, a, s′)Vπ(s
′)

Interestingly, from a value function V can be derived a greedy policy

πV , provided the transition function is known: when in state s, select

the action a leading to the state with best expected value:

πV (s) = argmax a∈A

{
p(s, a, s′)V (s′) probabilistic trans.

V (tr(s, a)) deterministic trans.

}

(1)

By construction, πVπ
is bound to improve on π. By learning value

function V ∗ as the maximum over all policies π of Vπ

V ∗(s) = maxπVπ(s)

one can thus derive the optimal policy π∗ = πV ∗ .

The interested reader is referred to [19, 20] for a comprehen-

sive presentation of the main approaches to Reinforcement Learn-

ing, namely value iteration and policy iteration algorithms, building

a sequence of value functions V i and policies πi converging to V ∗

and π∗. The bottleneck of estimating the optimal value function is

that all states must be visited sufficiently often, and all actions must

be triggered in any state, in order to enforce the convergence of V i

and π(V i) toward V ∗ and π∗. For this reason, RL algorithms hardly

scale up when the size of the state and action spaces is large, all the

more so as the state description must encapsulate every information

relevant to action selection in order to enforce the Markov property.

New RL approaches devised to alleviate this bottleneck and based

on preference learning have been proposed in 2011 [11, 2]. [11] is

concerned with the design of the reward function in order to facil-

itate RL; for instance in the medical protocol application domains,
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how to associate a numerical negative reward to the patient’s death

? The authors thus extend the classification-oriented approach first

proposed by [17] as follows. In a given state s, an action a is as-

sessed by executing the current policy until reaching a terminal state

(rollout). On the basis of these assessments, pairs of actions can be

ranked with regard to state s and policy π (a <s,π a′). These rank-

ing constraints are exploited within a learning-to-rank algorithm (e.g.

RankSVM [13]), yielding a ranking hypothesis hs,π : A 7→ R. The

claim is that such action ranking hypotheses are more flexible than

classification hypotheses, aimed at discriminating “the” best actions

from the others conditioned by the current state. In summary, the

ranking hypothesis depends on the policy and the current state, and

operates on the action space.

Quite the contrary, in [2] the ranking hypothesis operates on the

policy space. The motivating application is swarm robotics, facing

two severe issues. Firstly, swarm robotics is hardly compatible with

generative model-based RL approaches; simulator-based approaches

suffer from the supra-linear computational complexity of simula-

tions w.r.t. the number of robots in the swarm (besides the simula-

tion noise). Secondly, swarm robotics hinders the inverse reinforce-

ment learning approach [1, 15], using the expert demonstrations to

learn a reward function. In most cases the swarm expert cannot de-

scribe (let alone demonstrate) the individual robot behavior leading

to the desired swarm behavior (known as the inverse macro-micro

problem [7]). The proposed approach, called PPL (Preference-based

Policy Learning) proceeds along an interactive optimization setting:

the robot(s) demonstrates a behavior, which is ranked by the expert

comparatively to the previous best demonstration. The ranking con-

straints are exploited through a learning-to-rank algorithm, yielding

a ranking hypothesis on the policy demonstrations and thus on the

policy space Π (h : Π 7→ R). This ranking hypothesis is used as

policy return estimate, casting RL as an optimization problem (find

π∗
h = argmax h(π)). Policy π∗

h is demonstrated to the expert, who

ranks it compared to the previous best demonstration, and the process

is iterated. Note that PPL thus faces the same difficulty as interactive

optimization at large [9, 22]: if the expert is presented with too con-

strained a sample of demonstrations, she does not have a chance to

teach her preferences to the system. PPL is thus extended to integrate

an active learning criterion, yielding the APRIL (Active Preference

learning-based Reinforcement Learning) algorithm [3].

3 Overview of DIVA

This section introduces and formalizes the principle of DIVA, and

discusses its strengths and limitations w.r.t. the state of the art.

3.1 Principle

DIVA is rooted in Murphy’s law (Anything that can possibly go

wrong, does). Formally, it posits that when the agent happens to be

in some good situation, its situation tends to deteriorate under most

policies. Let us illustrate this idea on the simple problem of having a

robot following another robot in an open environment. Assume that

the follower robot is initially situated behind the leader robot (Fig. 1,

left, depicts the follower state, given as its camera image). Assume

that both follower and leader robots are equipped with the same sim-

ple Go Ahead controller (same actuator value on the left and right

wheel of both robots). Almost surely, each robot trajectory will devi-

ate from the straight line, due to e.g. the imperfect calibration of the

wheel actuators or different sliding frictions on the ground. Almost

surely, the two robot trajectories will be deviated in a different way.

Therefore, the follower will at some point lose track of the leader

(Fig. 1, right, depicts the follower state after circa 52.7 (+-20.6) time

steps, that is, XX seconds).

Figure 1: Left: The follower robot is initially aligned behind the

leader robot. Right: Both leader and follower robots are operated by

the same Go ahead controller. Due to mechanical drift, the follower

sooner or later loses track of the leader.

The intuition can be summarized as: the follower state was never

as good as in the initial time step; it becomes worse and worse along

time.

3.2 Formalization

The above remarks enable to define a ranking hypothesis on the state

space, as follows. Let us consider K trajectories of the robot follower

noted S1 . . . SK , where each trajectory Si is defined as a sequence

of states s
(i)
t , t = 0 . . . Ti. A value function is sought as a function V

mapping the set of states S onto R, satisfying constraints V (s
(i)
t ) >

V (s
(i)
t+1) for all i = 1 . . .K and t = 0 . . . Ti − 1.

Formally, it is assumed in the following that the state space S is

embedded in R
d. A linear value function V̂ ∗ : S 7→ R is defined as

V̂ ∗(s) = 〈ŵ∗, s〉

where ŵ∗ ∈ R
d is given after the standard learning-to-rank regular-

ized formulation [4]:

ŵ∗ = arg min 1
2
||w||22 + C

∑k

i=1

∑
t<t′≤Ti

ξ
(i)

t,t′

s.t. ∀ 1 ≤ i ≤ K, 0 ≤ t < t′ ≤ Ti

〈w, s
(i)
t 〉 ≥ 〈w, s

(i)

t′
〉+ 1− ξ

(i)

t,t′
; ξ

(i)

t,t′
≥ 0

(2)

This quadratic optimization under constraints problem can be solved

with affordable empirical complexity [14]. After Eq. (1) and pro-

vided that the transition model is known, value function V̂ ∗ derives

a policy π̂∗. Further, by construction any value function derived by

monotonous transformation of V̂ ∗ induces the same policy π̂∗.

3.3 Discussion

Among the main inspirations of the DIVA approach is TD-Gammon

[21]. TD-Gammon, the first backgammon program to reach a cham-

pion level in the 80s, exploits games generated from self-play to train

a value function along a temporal difference algorithm. The value

function is likewise trained from a set of games, or trajectories Si

described as a sequence of positions s
(i)
t , t = 0 . . . Ti. The dif-

ference is as follows. Firstly, TD-Gammon only imposes the value

for the initial and the final positions, with V (s
(i)
0 ) = 1/2 (the ini-

tial position is neutral), and V (s
(i)
Ti
) = 1 (respectively 0) if the first

player wins (resp., loses) the game. Secondly, the learning problem
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Figure 1. An annotated chess game (screen-shot taken from
http://chessbase.com/).

move evaluation: Each move can be annotated with a symbol indi-
cating its quality. Six symbols are commonly used:

• very poor move (??),

• poor move (?),

• speculative move (?!),

• interesting move (!?),

• good move (!),

• very good move (!!).

position evaluation: Each move can be annotated with a symbol in-
dicating the quality of the position it is leading to:

• white has a decisive advantage (h),

• white has a moderate advantage (c),

• white has a slight advantage (f),

• equal chances for both sides (j),

• black has a slight advantage (g),

• black has a moderate advantage (e),

• black has a decisive advantage (i),

• the evaluation is unclear (k).

time evaluation: Each move can be annotated with a symbol indi-
cating a time constraint that arose at this move. This information
is not used in our experiments.

In addition to annotating games with NAG symbols, annotators
can also add textual comments and move variations to the game, i.e.,
in addition to the moves that have actually been played in the course
of the game, an annotator provides alternative lines of play. Those
are usually suggestions in the form of short move chains that are
leading to more promising states than the move chain used in the
real game. Variations can also have NAG symbols, and may contain
subvariations.

Figure 1 shows an example for an annotated chessgame. The left-
hand side shows the game position after the 13th move of white.
Here, black is in a difficult position after the mistake he made.
(12...Qg6? ). From the suggested moves, 13...a5?! is the best, but

even here white has the upper hand at the end of the variation
(18.Rec1!c ), as well as in the end of the suggested move chain
starting with 13...QXc2 . On the other hand, 13...NXc2?? is an even
worse choice, ending in a position that is clearly lost for black (h).

It is important to note that this feedback is of qualitative nature,
i.e., it is not clear what the expected reward is in terms of, e.g., per-
centage of won games from a position with evaluation c. However,
it is clear that positions with evaluation c are preferable to positions
with evaluation f or worse (j, g, e, i).

Also note that the feedback for positions typically applies to the
entire sequence of moves that has been played up to reaching this
position (a trajectory in reinforcement learning terminology). The
qualitative position evaluations may be viewed as providing an eval-
uation of the trajectory that lead to this particular position, whereas
the qualitative move evaluations may be viewed as evaluations of the
expected value of a trajectory that starts at this point.

However, even though there is a certain correlation between these
two types of annotations (good moves tend to lead to better positions
and bad moves tend to lead to worse positions), they are not inter-
changable. A very good move may be the only move that saves the
player from imminent doom, but must not necessarily lead to a very
good position. Conversely, a bad move may be a move that misses
a chance to mate the opponent right away, but the resulting position
may still be good for the player.

3 Learning an Evaluation Function from
Preferences

For learning the mentioned SVM model, it is required to formulate
the task as a binary classification problem. We are showing how this
can be done by using preference learning.

3.1 Preference Learning
Preference learning is about inducing predictive preference mod-
els from empirical data. This establishes a connection between ma-
chine learning and research fields like preference modeling or deci-
sion making. Especially “learning to rank by preferences” is deemed
promising by the community. Preference learning can be applied to
label ranking, by defining preferences over a set of labels concern-
ing a specific set of objects [25]. But it is also possible to define
preference directly over a set of objects, for creating a ranking of
those objects [14]. Preferences themselves are constraints that can
be violated, which leads to higher flexibility concerning the solv-
ing process, opposed to hard constraints. These constraints can be
described via a utility function or preference relations. [12] We are
only considering preference relations in this work, because they can
be represented in a qualitative manner.

Object Ranking is about learning how to order a subset of objects
out of a (potentially infinite) reference set Z . Those objects z ∈ Z
are usually given as a vector of attribute/value pairs, but this is no
necessary property. The trainings data is given in the form of rank-
ings, which is decomposed into a finite set of pairwise preferences
zi � zj. The object ranker is then learning a ranking function f(·)
which returns a (ranked) permutation of a given object set. [12]

3.2 States and Actions
In chess, we are searching for the best action a ∈ A for a state s ∈
S. For game tree exploration concerns or suboptimal play, it can also
be required to determine the expected quality of an suboptimal action
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a′ ∈ A. When defining this quality in a relative way, as opposed
to an absolute value, we are searching for a rank. Because of the
high amount of legal states in chess (roughly 1050 states [2]), it is
not feasible to learn those ranking functions directly. Considering the
chess transition function f : S×As → Ss, with Ss ⊂ S as the set of
states that can be reached from s by an action a ∈ As possible in s,
we can rewrite the problem as the search for a ranking for all s ∈ Ss

. This ranking is also not dependent on the current state s, because
the state/action history is not relevant for a chess state (excluding the
fifty-moves and the threefold repetition draw rules). This reduces the
problem to a object ranking problem over all s ∈ S.

3.3 SVM-based ranking
Following [16], we can use state preferences of the form si � sj for
training the SVMRANK ranking support vector machine proposed
by [13].2 Its key idea is to reinterpret the preference statements as
constraints on the evaluation function, i.e.,

si � sj ⇔ h(si) > h(sj).

If the function h is a linear, i.e., it is a weighted sum

h(s) =
∑
f

wf · f(s)

of features f , the latter part is equivalent to

h(si − sj) =
∑
f

wf · f(si − sj)

=
∑
f

wf · (f(si)− f(sj)) > 0

Thus, essentially, the training of the ranking SVM corresponds to the
training of a classification SVM on the pairwise differences si − sj

between positions si and sj . The pairwise ranking information can
thus be converted to binary training data in the form of a feature
distance vector

−→
A with the preference relation r ∈ {<,>} as the

binary class vector.

4 Generating Preference Data from Game
Annotations

The training data that are needed for an object ranking algorithm
like SVMRANK can be generated from game annotations of the type
discussed in Section 2. For our first experiments, we only focused on
move preferences, and ignored state preferences.

Our algorithm for generating preferences from move annotations
is sketched in Algorithm 1: a given list of games G in PGN format
is parsed, and triplets (s,a,n),n ∈ Ns,a with Ns,a being the list
of NAG in (s, a) are created for each occurrences of a NAG sym-
bol. A state is represented by its Forsyth-Edwards Notation (FEN).
It is a serialized representation of the game board, capturing all data
that is required to uniquely identify a chess state [8]. Actions are
saved in the Long Algebraic Notation (LAN). After collecting this
data for every game, all triples containing the same FEN state are
compared. The NAG symbols are checked against a static relation
list and a pairwise preference relation for the attached actions is cre-
ated, if possible. The static relation table contains entries like n1:??
n2:!? → n1 < n2. In rare cases, we may get multiple conflicting
annotations for a pair (s,a), which are then ignored.

2 Available from http://svmlight.joachims.org.

Algorithm 1 Preference Generation
Require: list of games G, initial position s0

1: triples← ∅, prefs← ∅, seen← ∅
2: for all g ∈ G do
3: s← s0
4: for all (a,Ns,a) ∈ g do
5: s← MOVE(s, a)
6: for all n ∈ Ns,a do
7: triples← triples ∪ {(s, a, n)}
8: seen← seen ∪ {s}
9: end for

10: end for
11: end for
12: for all s′ ∈ seen do
13: for all Ns′,a, Ns′,a′ ∈ triples with a 6= a′ do
14: r ← RELATION(Ns′,a, Ns′,a′)
15: if r 6= ∅ then
16: s1 ← MOVE(s′, a), s2 ← MOVE(s′, a′)
17: prefs← prefs ∪ {(s1, s2, r)}
18: end if
19: end for
20: end for
21: return prefs

When applying this algorithm to the example given in
Figure 1, it would yield the following action preferences:
(s, QXc2 �NXc2 ),(s,a5 �NXc2 ),(s,a5 �QXc2 ) with s be-
ing the state shown in the example.

In a last step, action preferences (s,a1 � a2) are converted to
state preferences by applying a1 and a2 to s, resulting in state pref-
erences s1 � s2, where si = MOVE(s,ai). A practical problem
is, that annotated moves are usually not leading to a stable state to
which the qualitative evaluation can be directly applied. For exam-
ple, in the middle of an exchange sequence, the first player will be
behind by one piece after the initial move but may gain a significant
advantage after a short chain of moves. For this reason, preferences
are not applied to the positions si, but to quiet positions that result
from a fixed-depth search starting in si (we use depth 7), followed by
a quiescence search. The positions s̄i at the leaves of these searches
are then used in the state preferences.

Additionally, most variations added to the PGN data are also move
chains and not single moves, hence we are applying the suggested
move chain to the state and not only the first, single move. This is
implemented in step 16 of algorithm 1.

5 Experimental Setup

For showing the usefulness of preference data, we are training a
SVM model based on preference data generated from annotated
chess games (Section 5.1), and employ it in the strong open source
chess engine CUCKOO (Section 5.2). All states are represented by the
heuristic features created by the position evaluation function. Train-
ing a linear kernel model allows us to simply extract the feature
weights for the linear sum function. The quality of the preferences
can now be analyzed by comparing the playing strength of our re-
weighted chess engine.
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Feature Type # Features Description
material difference 1 Difference in the sum of all piece values per player.
piece square 6 Position dependent piece values by static piece/square tables. A single value for every piece type.
pawn bonus 1 Bonus for pawns that have passed the enemy pawn line , while also considering its distance to the enemy

king.
trade bonus 2 Bonus for following the “when ahead trade pieces, when behind trade pawns” rules.
castle bonus 1 Evaluates the castling possibility.
rook bonus 1 Bonus for rooks on (half-) open files.
bishops scores 2 Evaluating the bishops position by attack possibilities, if trapped and relative positioning.
threat bonus 1 Difference in the sum of all piece values under attack.
king safety 1 Evaluates the kings position relative to the rooks.

Table 1. Features used in the linear evaluation function of the CUCKOO chess engine.

5.1 ChessBase

As a data source we are using the Mega Database 2012, provided by
Chessbase.3 To the authors’ knowledge, it is the largest database of
professionally annotated chess games available. The annotations are
commonly, but not exclusively provided by chess grandmasters. In
this first study, we only considered action preferences, and ignored
state preferences, mostly because of complexity considerations.

In the more than 5 million games contained in the database,
we identified 86,767 annotated games with 1.67 million annotated
moves in total. 343,634 NAG symbols occurred pairwise concern-
ing the same state, but different moves. Out of these, the preference
generation process yielded 271,925 preferences with 190,143 being
unambiguous and not equal. The rest are incomparable symbol pairs,
and were ignored in our data generation process.

5.2 CUCKOO Chess Engine

We used the CUCKOO chess engine4 for our experiments, because
of its combination of high playing strength5 and good modifiability.
It facilitates BitBoards [19, 1] as state representation and NegaScout
[18] as search algorithm.

Most state of the art chess engines are using a heuristic position
evaluation function, while searching for the best, currently reach-
able position with enhanced Alpha-Beta search algorithms like Ne-
gaScout. For performance reasons, evaluation functions are com-
monly linear sums over abstract, manually constructed features. Usu-
ally, features like material difference or usefulness of pieces in their
current position are used. Table 1 shows the 16 features shown by
CUCKOO. We used these features for describing a state.

The CUCKOO Chess Engine was used in a single thread configu-
ration. All experiments haven been executed on systems with 2 cores
or more, ensuring independence of the available computing power
for each player.

5.3 Training Data

In our experimental setup, we are creating the object preferences as
described in Section 4. The pairwise preference data is used as train-
ing data for SVMRANK, which is an optimized implementation of
the SVM based ranker described in 2.4, which can handle pairwise

3 http://www.chessbase.com/
4 http://web.comhem.se/petero2home/javachess/
5 http://www.computerchess.org.uk/ccrl/

preference data directly [13]. The feature weights can now be ex-
tracted out of the SVMRANK model and be applied to the CUCKOO

chess engine.
The features have not been standardized or normalized, because

they are already internally normalized to a pico-pawn scale, hence
no significant improvement in classification accuracy was expected.
This was also confirmed in experiments.

Annotators can disagree concerning the exact quality of a move,
but the same relative outcome is expected when comparing two
moves. E.g. an annotator may use n1:? instead of n1:??, but not
n1:!! if the consensus is n1 < n2, n2:!?. Tests confirmed the ex-
pected low amount of directly contradicting preferences (< 0.2%),
but it is still possible for subsets to indicate a different valuation of
features.

We created 6 different engines, based upon different training set
sizes. 5%, 10%, 25%, 50%, 75% and 100% randomly sampled ele-
ments of the available preference data have been used to create the
different engines. The results have been generated by averaging over
three all-against-all tourneys, including the player with the original
feature weighting as upper bound and a random player as baseline.
The random engine is picking new random weights for each posi-
tion evaluation. The distribution for those weights is a uniform distri-
bution, bounded by the min/max values observed within all learned
SVMRANK models. Each pairing played 100 games with a 5min
timeframe and no increments.

5.4 Evaluation

All results are reported in terms of Elo ratings [9], which is the com-
monly used rating system for rating chess players. It not only consid-
ers the absolute percentage of won games, but also takes the strength
of the opponent into account. A rating difference of a 100 points ap-
proximately means that the stronger player has an expected win rate
of 5/8. It also enables the reporting of upper and lower bounds for the
playing strength of each player. For calculating the Elo values, a base
Elo of 2600 was used, because this it the rating for the Cuckoo Chess
Engine as reported by the Computer Chess Rating List6. It should
be noted that computer engine Elo ratings are not directly compa-
rable to human Elo ratings, because they are typically estimated on
independent player pools, and thus only reflect relative strengths.

6 http://www.computerchess.org.uk/ccrl/
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6 Results
6.1 Predictive Accuracy
We first compared the predictive accuracy of different classifiers on
the binary classification problem of learning a preference relation
from the collected preference set. The binary classification accuracy
a can be compared to the average amount of swapped pairs over all
pairs metric e of the original ranking problem by a = 1 − e. The
Weka7 implementation of all classifiers was used, if not stated other-
wise.

Table 2 shows that multilayer perceptrons and random forests
yielded the best results, whereas LIBLINEAR and SVMRANK per-
formed the worst. This seems to indicate that a non-linear combina-
tion of the base features is able to yield a better performance than the
linear combination that is used in the chess program.

We can also see the performance of the original position evalu-
ation function of CUCKOO, which is a linear function that assigns
a uniform weight to all features. IT is somewhat higher than the
trained linear functions, but considerably below the best non-linear
functions.

Classifier Accuracy
MULTILAYER PERCEPTRON [5] 0.6871
RANDOM FOREST [6] 0.6864
NAIVE BAYES TREE [15] 0.6799
J48 [17] 0.6719
PEGASOS [20] 0.6651
LIBLINEAR8[10] 0.6521
SVMRANK9[13] 0.6505
CUCKOO 0.6620

Table 2. Comparison of the predictive performance of different classifiers
and the CUCKOO chess engine (10-fold CV).

6.2 Playing Strength
For evaluating the playing strength we were limited to using a lin-
ear evaluation function because only those could be easily plugged
into the chess program. We chose evaluation functions learned by
SVMRANK. Figure 2 shows the development of the rating over the
percentage of used preferences in the training data. It is clearly rec-
ognizable in that an increase in the amount of used preference data
is leading to an improved chess engine, which we take as evidence
that the game annotations provide useful information for learning an
evaluation function. The playing strength is clearly above the random
baseline, which reached an average Elo rating of 2332±32, but well
below the original player and its average Elo rating of 2966± 43.

6.3 Stability
The player that was trained on 5% of the data is a clear outlier, re-
sulting from the comparably high variance in the training data at this
point. The variance of the feature weights at this setting is shown in
Figure 3.

However, most features are showing convergence and a mostly sta-
ble average value. Figure 4 shows the development of the feature

7 http://www.cs.waikato.ac.nz/ml/weka/
8 http://www.csie.ntu.edu.tw/˜cjlin/liblinear/
9 http://www.cs.cornell.edu/people/tj/svm_light/svm_
rank.html
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Figure 2. Learning curve, measured in Elo rating.

values (average, standard deviation and min/max values) for all fea-
tures. The 10 features in the left and the middle graph are quite sta-
ble, whereas the features in the right graph are rather unstable. For
the features castleBonus and bishopB, a possible explanation could
be the sparsity of these values. The feature value difference for these
values is 0 in 84.6% and 99.7%, respectively, of all training exam-
ples.

7 Conclusion

This paper presented the results of a preliminary study that uses ex-
pert feedback in the form of game annotations for the automated
construction of an evaluation function for the game of chess. It
was shown how annotated chess games can be used for the cre-
ation of preference data. This is especially interesting because of the
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Figure 3. Learned weight for the 5 most variant features, based on 10
different 5% samplings
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Figure 4. Average and variance for the feature weights, averaged over 10 samples per subset size. Weights are scaled to materialDifference= 1.

widespread availability of annotated chess games, which enables the
creation of large-scale datasets.

Following the approach shown by Paulsen et al [16], the prefer-
ences have been successfully used to learn the feature weights for
an position evaluation function. It can be observed, that the playing
strength of the chess engine is scaling with the amount of trainings
data. This is a first step towards using qualitative feedback in game
playing scenarios.

However, alhthough we can observe a correlation with the amount
of seen preferences and the playing strength of the learned players,
their overall strength was not able to reach the strength of the orig-
inal player. We still have to investigate the reasons for this, but it
should be noted that the original feature weighting is outperforming
the learned weights. Thus, SVMRANK was only able to find subop-
timal feature weights.

Moreover, in this work we have essentially ignored state pref-
erences and focused on action preferences. The reason for this
was pragmatic, because action preferences relate to a single state,
whereas state preferences can be widely compared, even across mul-
tiple games. For example, every position evaluated with h can be
considered to be better than every position evaluated with j, all of
which can, in turn, be considered to be preferred over positions that
are evaluated with i. This approach gives rise to a vast number of
preferences. One could consider to only apply this to positions of the
same game, because different annotators may have a different cali-
bration of the used symbols. This would also reduce the complexity.
These issues are currently under investigation.
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Fürnkranz and Hüllermeier [12], 45–64.

ECAI-12 Workshop on Preference Learning: Problems and Applications in AI 58




