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1 Introduction

Machine learning comprises of building programs to solve problems and to improve the performance
of solutions based on examples and experiences over time. Implementing such programs is of great
importance since some tasks require solutions which change in time and involve human expertise.
For example, problems like speech recognition, medical diagnosis and bioinformatics belong to this
category, and we need machine learning algorithms to deal with them, as classical techniques are not
able to solve such problems [1][2][3].

A usual task in machine learning is supervised learning. In this task, the information provided to the
learner takes the form of a set of examples (or instances), called training set, which are input/output
pairs. The input of each instance consists of the values of attributes that measure different aspects of
the instance. The output is the associated class (i.e the spam or not spam judgment in the spam filtering
problem constitute the class of the example) [4].

In the weather data [5], an instance has the following form :

< outlook = sunny, temperature = 85, humidity = 90, windy = TRUE, play = no >

Each example is described with values for all its attributes: outlook, temperature, humidity and windy.
The class of this instance is play which has the value no. Attributes consist of two main types: nominal
or numeric. Nominal attributes (also called categorical) take on values in a prespecified, finite set of
values. For example, outlook is a nominal attribute, and its values are sunny, overcast and rainy. On
the other side, temperature and humidity are numeric attributes. This kind of attributes (also called
continuous attributes) measures numbers (real or integer) [4].

Furthermore, classification and regression are supervised learning problems, where a training set is
available, and the task is to learn the mapping from the input to the output. The approach in machine
learning is that we assume a model defined up to a set of parameters:

y = g(x |θ )

where: g() is the model, and θ its parameters. x is the input (set of attributes).
y represents the class in classification (0/1 in binary classification), i.e the objects should be categorized
into separate categories (classes). The problem of separating the instances into more than two classes
is handled by multi-label classification. In the regression task, y is a number (a real value should be
predicted). In classification, g(.) represents the discriminant function which assigns the appropriate
class (an example of a classification task is spam filtering). In regression, g(.) is called the regression
function [2]. An example of a regression task can be to predict how high the temperature will be
tomorrow.

In this thesis, we will rather focus on the classification problem. In this case, g(.) is referred to as the
classification function. After processing all the training instances, the learning phase is completed. The
model g() is then able to classify new instances (called test set). These instances have not been used in
the formation process of the model.

In general training and testing instances are provided together in one set, which will be split randomly
into a fixed number of partitions (called folds). The folds have approximately the same size, and each
one is used in turn for testing and the rest of the partitions are used for training, in this way every
example in the dataset will be used exactly one time during the testing process. This technique is called
cross-validation and the standard number of folds is 10 [4].

An important procedure used during cross-validation is stratification, and it signifies that each class in
the dataset should be represented roughly in the same proportion in every fold. This helps the model
to perform better results, without having to classify instances whose classes did not take part in the
building process of the model.
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The machine learning program builds the model g() using the nine-tenths of the data for learning.
During testing, the correctly classified instances in the remaining fold are calculated, to compute the
values of accuracy and error:

Accurac y =
Number o f cor rect l y classi f ied examples

Number o f examples
(1)

Error = 1 − Accurac y (2)

The 10 accuracy estimates are averaged to deliver an overall accuracy estimate.
During the learning scheme, the model optimizes its parameters θ , such that the approximation error
is minimized. If this is achieved, the accuracy is maximized and the model is said to generalize well to
unseen data: this means it is very likely to make correct predictions for novel instances.

The generalization may be affected by incompleteness or anomalies (also called noise) contained in
real-world data, from which we learn. Some data cleaning methods can be used, in order to handle
these types of anomalies. In general, if there is noise, it will confuse the construction of the model; this
will describe the noise instead of just the underlying function, and it may become harder to classify the
unseen examples correctly. This phenomenon is called overfitting. Therefore, a model that overfits the
data will generally have a poor accuracy measure, i.e it won’t generalize well on unseen examples. Over-
fitting may be avoided by building models with a complexity as small as possible [2][4][6]. However,
there is a solution to reduce the complexity of the classifier, known as pruning. This technique will be
described in section 2.1.2.

1.1 Motivation

Support vector machines (SVMs) are supervised learning models used for classification. Generally,
they show good performances when their parameters are fitted to the data. Meanwhile, symbolic models
(such as algorithms for building decision trees, rule learning or ensemble learning algorithms) are often
used in their standard configuration without appropriate adjustment of their parameters; that makes
them not perform as good as SVMs.
However, when dealing with real world classification tasks, symbolic approaches are preferred as they
are quite interpretable, which is generally not the case of support vector machines. Therefore, we want
to know how far the performance of symbolic approaches can be improved when we optimize their
parameters in a similar way as they are optimized for SVMs.

1.2 Objective of the thesis

In this thesis, we give an overview and a comparison of several existing classification techniques.
The main objective is to see whether decision trees, rule learners and ensembles can be as accurate as
support vector machines once their parameters are thoroughly tuned. In order to answer this question,
we perform an empirical study which involves optimizing parameters of the different models using the
same amount of data.

1.3 Structure of the thesis

In what follows, a short summary of the sections is presented:
Chapter 2 introduces the various learning techniques.
In chapter 3, we optimize the parameters of the algorithms (implementing the techniques described in
chapter 2) in order to get the best accuracy values.
Chapter 4 presents a comparison between the different studied approaches.
Finally, in chapter 5, we will give a summary of the results we obtained and conclude this work.
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2 Learning Techniques

There are several techniques to perform classification. In this section we explain the basic ideas be-
hind some symbolic approaches used in classification and support vector machine algorithms. We will
present their different ways of learning, as well as the characteristics of each model. The overview of the
described algorithms is based mainly on the explanations from [4].

2.1 Decision Tree Learning

A decision tree is a kind of supervised learning method; it has a recursive structure consisting of nodes
and leaves. Every node has the function of testing a particular attribute, while leaves represent the
different classes of the data, so every leaf gives a classification for instances that reach it. To classify an
instance, we start from the root and browse through the tree according to the values of the attributes
which will be tested in the nodes. When a leaf is reached, its class is assigned to the example [4].
Figure 1 presents an example of decision tree for the weather dataset.

Figure 1: Decision tree for the weather data.

Given a set of instances, it is possible to build different decision trees. However, the target for the
classification task is to construct a decision tree which generalizes well to new examples.

2.1.1 ID3 Algorithm

The ID3 method [5] constructs a simple and efficient decision tree. Before explaining how to determine
which attributes should be set for each node, some definitions are needed: Entropy measures the quantity
of information contained in every node. A high entropy characterizes an equally distribution of the
classes.

Ent rop y(S) =
c
∑

i=1

−pi log2 pi (3)

where S is the set of examples, c is the number of the classes of the learning problem, and pi is the
proportion of examples that belong to the i-th class.

As an example, in the weather dataset, we have 14 instances: 9 are positive (classified as Sport = yes)
and 5 are negative (Sport = no), so the corresponding entropy is:
0 [4] p. 101
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Ent rop y([+9,−5]) = − 9
14

log2 (
9
14
) − 5

14
log2 (

5
14
) = 0.94

To determine which attribute should be tested at a given node, the information gain is calculated for
each attribute A, and the one that has the highest value is the one that gains the most information and
will be selected.

Gain(S, A) = Ent rop y(S) −
∑

i

Si

S
· Ent rop y(Si) (4)

For the weather data, the outlook attribute is the one that gains the most information, and is selected to
be the root of the tree. In what follows, we will explain in details the steps for building the rest of the
tree. After choosing the root, the tree will have the form presented in figure 2.

Figure 2: Determining the root of the decision tree for the weather data.

For each value of outlook, we obtain a corresponding branch. Table 1 lists the instances for which
outlook is rainy.

Table 1: Examples from the weather data.

outlook temperature humidity windy play ?

rainy cool normal false yes

rainy mild normal false yes

rainy mild high true no

rainy cool normal true no

rainy mild high false yes

There are 3 positive and 2 negative examples, and we calculate the entropy for the case
outlook = rainy as follows:

Ent rop y([3+, 2−]) = − 3
5
·log2(

3
5
) − 2

5
· log2 (

2
5
) = 0.971

Now we calculate the information gain for the attributes temperature, humidity, and windy. We obtain
the following values:

Gain(Srainy , temperature) = Ent rop y([3+, 2−])− [ 2
5
·Ent rop y([1+, 1−])+ 3

5
·Ent rop y([2+, 1−])] = 0.02
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Gain(Srainy , humidi t y) = 0.02

Gain(Srainy , wind y) = 0.971

We notice that windy is the attribute that gains the most information, and it is selected at the
next node (see figure 3).

Figure 3: Branch of the decision tree for the weather data.

We obtain too pure nodes (containing instances form the same class). So there is no need to split any
further at this branch. We repeat the same process recursively in the other branches until there are no
more examples available and we obtain the final tree represented in figure 1.

2.1.2 Pruning

Pruning is a technique to handle the problem of overfitting the data; it reduces the size of the decision
tree by removing the branches that may be based on noisy examples, in order to reduce the generalization
error on unseen data. There are two approaches to perform tree pruning:
Pre-pruning (also called forward pruning) consists of stopping the tree-construction process early by
deciding to not develop a tree partition any further if the information becomes unreliable.
The second strategy to get simpler trees is called post-pruning (or backward pruning). The idea is to
grow first a full decision tree, until all leaves are pure and all training examples are classified correctly.
Then, two different operations can be performed to postprune. One is subtree replacement: the tree
is pruned by replacing some branches with leaf nodes. The most represented class in the subtree being
replaced, is assigned to the leaf [2][4][6]. The other option consists of raising a whole subtree to replace
another one, it is known as subtree raising (see figure 4). Subtree C is raised to replace node B, and all
instances of leaves 4 and 5 are redistributed into the node C [4].
Most decision tree builders use the post-pruning strategy, because it generally leads to the construction
of more accurate trees. However, pre-pruning is faster [2][4].
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Figure 4: Example of subtree raising.1

2.1.3 C4.5 Algorithm

The C4.5 Algorithm [7] is an extension of ID3 which is able of learning from real-world data. It
includes methods for handling noisy examples, numeric attributes and missing values for some attributes
[4]. This algorithm uses the pruning technique to handle overfitting and remove branches that provide
bad results during the classification task.

In order to decide which pruning strategy should be performed, the C4.5 estimates the error at
different nodes based on some statistical reasoning. This is known as Error-based Pruning. The user
determines a confidence parameter c (default 25%), and a confidence interval is calculated from
training data. The upper bound of this interval is used to estimate the error rate e, which leads to
a pessimistic error estimate [4]. Starting from the bottom of the tree, we examine each non-leaf
subtree. If the combined error estimate of the leaves is greater than the error rate at the parent node,
the leaves are pruned away (subtree replacement) [7]. Otherwise, the subtree is still unchanged
and we browse back through the tree in the direction of the root, to check if pruning should be
realized in another branch. It is also possible that the error estimate of a non-leaf subtree is lower
than that of its parent node, in this case the subtree is raised to replace the parent node (see figure 4) [4].

1 [4] p. 194
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2.2 Ensemble learning

Before exposing the characteristic of ensemble learning, the definitions of bias and variance are
needed. Bias measures the difference between the model and the learning problem (building a bad
model increases the bias). In the other hand, the variance is the part of error caused by the data set.
The main aim is to reduce both variance and bias in order to build a model that is adapted to any given
decision boundary, without being highly affected by the variations in the data. This will reduce the total
expected error (bias and variance) of the model [4].

The idea is to learn multiple classifiers instead of a single one, and then combine their predictions. It
is realized by bagging [8]: this technique involves the random generation of a sample of training sets of
the same size from the original one, and learning a classifier from each sample. During the testing step,
the classifiers are combined: this means the class that is predicted the most from the different classifiers
is selected to be the ensemble model class. This method is known as voting and is realized for every test
instance [4].

2.2.1 Random Forest Algorithm

The random forest algorithm [9] is based on bagging: after building multiple training sets, the algo-
rithm constructs one tree per training set. During the growing of the trees, the best split at each node is
selected among a random subset of features and not among the whole attributes like it is the case in the
construction of decision trees. This technique is called random split selection and the trees are known
as random trees. Doing so, the attributes, which do not have the highest information gain value, can be
selected for splitting at a particular node, and their combination with other attributes may give a better
prediction. After constructing a multitude of decision trees, the various outputs are merged into a single
prediction, which is used to perform the classification task. By using the right type of randomness, the
classifier is likely to achieve good accuracy results [9].

The random forest method deals well with continuous and categorical attributes. Moreover, it helps
to avoid overfitting and it reduces the variance by making the decision boundary smoother and more
stable when there are variations in the data [10].
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2.3 Rule Learning

In this section we present another family of learning methods known as rule learning. A rule has an
if-then structure. The if-part (called the rule body) contains a conjunction of conditions in the form of
attributes tests, and the then-part (rule head) specifies the predicted class [6]. If the example fulfills the
conditions of the rule, we say that the example is covered by this rule. Rules without conditions in their
body are called empty rules.

Generally a single rule can not classify all training instances (see figure 5), and other rules have to be
learned and added to the rule set in order to formulate the target theory (hypothesis). This represents
the concept description and should be complete (all positive examples are covered) and consistent (no
negative example should be covered).
Example: Let us suppose we want to find a theory that explains the six instances stated in table 2
from the iris data [11]. It contains four numerical attributes (sepallength, sepalwidth, petallength and
petalwidth) and the class that predicts the iris plant (Iris-setosa, Iris-versicolor or Iris-virginica).

Table 2: Examples from the iris data.

sepallength sepalwidth petallength petalwidth class

4.8 3.4 1.9 0.2 Iris-setosa

5.0 3.5 1.6 0.6 Iris-setosa

6.3 2.9 5.6 1.8 Iris-virginica

7.1 3.0 5.9 2.1 Iris-virginica

5.0 2.3 3.3 1.0 Iris-versicolor

6.3 2.5 4.9 1.5 Iris-versicolor

The following rules can be learned from the examples in table 2:

if (petallength ≤ 1.9) then class = Iris-setosa
if (petallength ≥ 3.3) and (petallength ≤ 4.9) then class = Iris-versicolor
if (petallength ≥ 5.0) then class = Iris-virginica

Figure 5: A set of rules classifying instances from the iris problem.

It is possible to extract a set of if-then rules from a decision tree. For each path from the root to a
leaf node, a rule is generated by making a conjunction of the tests in every node. However, most rule
learning algorithms are based on a separate and conquer approach. The first step consists of searching
one or more rules to cover the examples of each class and separates them from the rest; this is the
separate part of the technique. During the conquer part, the algorithm tries recursively to learn other
rules that describe the remaining training instances until all instances in the training set are covered
[4][6][12].

In general, the obtained rule learning classifier overfits the training data. The model has a high
complexity and does not generalize well on unseen instances. As described in section 2.1.2, the pruning
technique is a solution to handle the problem of overfitted models. Complex rules will be refined in
order to maximize the accuracy on future data [4][12]. As for decision trees, there are two pruning
strategies: Pre-pruning consists of simplifying the rules during the learning process, while post-pruning
is performed after learning. We will describe some pruning algorithms in the next sections.
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2.3.1 Reduced error pruning

Reduced error pruning (REP) is a post-pruning algorithm introduced in [13]. Its basic idea is to split
the training set into two parts called a growing set and a pruning set. The first step consists of learning
complete and consistent rules in the growing set, based on separate and conquer approach, like it was
described above. After that, the hypothesis is simplified by pruning each rule as long as the error does
not increase in the pruning set. Then, the rule is added to the rule set and all covered instances are
removed from both growing and pruning sets [4][14]. In general, two-thirds of training data are used
for growing the rules, and the rest for pruning.

It was shown in [13] that reduced error pruning produces precise theories and is independent of the
algorithm used for learning the concept. However, it has a high time complexity (O(n4)) and the fact
of splitting the training data into a growing set and a pruning set, may have a negative impact on the
performance of the algorithm [14][15].

2.3.2 Incremental reduced error pruning

Incremental reduced-error pruning (IREP) is a rule learning algorithm introduced in [15]. The idea
is to integrate pre- and post-pruning to handle the inefficiency problems of REP: instead of learning a
complete and consistent thesis from the training data, and prune it after (as is the case in REP), every
rule will be pruned right after it has been learned. Then the final rule is added to the theory and all
covered examples are removed. Finally, the training set is split once again into two parts (for growing
and pruning the rule), a new rule is generated and the process is repeated until there are no instances
available. This idea forms the basis for an algorithm called RIPPER, which will be discussed in the next
section [15].

Unlike the reduced error pruning, this method ensures that after the pruning of each rule, all examples
covered by it are removed from the training set, and don’t play a part during the learning of future rules.
Moreover the IREP algorithm has a lower complexity (O(n · log2n)) since it does not grow a complete
overfitted theory, but prunes every rule immediately after it has been generated [15][16].

2.3.3 Repeated incremental pruning to produce error reduction

RIPPER, an acronym for repeated incremental pruning to produce error reduction [14], is an algorithm
based on the same principle as IREP. However the two algorithms differ in their stopping criterion. In
IREP, this criterion is based on the accuracy of the rule on the pruning set: every rule is pruned right
after it has been learned, until its accuracy is maximized, but only rules which error don’t exceed 50%
(rules that cover more positive than negative examples) are added to the rule set [15]. On the other
hand, RIPPER has an alternative stopping criterion based on the MDL (minimum description length)
principle described in [17]. This heuristic assumes that the best hypothesis is the one that captures the
most regularity between the examples in the training set (the data can be well compressed) [17][18].

Moreover, in comparison with IREP, the RIPPER algorithm adds a new post-pruning phase, called rule
optimization. The rules are considered in turn in the order in which they were created. For every rule Ri
from the hypothesis (R1, R2, ..., Ri, ..., Rn), two alternative rules are generated:
One is called the replacement for Ri and is obtained by growing a rule R

′

i and pruning it to minimize the

error of the hypothesis (R1, R2, ..., R
′

i, ..., Rn) on the pruning set.
The second one is formed in a similar way by refining Ri and adding new conditions to it, instead of
starting of an empty rule. It is called the revision of Ri. After generating the replacement and the
revision of the original rule Ri, the algorithm decides based on the MDL heuristic, whether to keep Ri in
the rule set or to replace it with one the new rules. It is also possible to iterate the optimization phase
by repeatedly optimizing the hypothesis [14].
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2.4 Support Vector Machine

Support Vector Machines (SVM) are a supervised learning models used in both classification and re-
gression tasks. These methods are helpful to solve multiple real world applications such as bioinformatics
and handwritten digit recognition [3]. In this section, we mainly use the following books: [2], [3] and
[19] to describe the SVM technique.

2.4.1 The maximal margin classifier

Let D = {(x i, yi), i = 1, ..., N} denote the training set. For every example in D, x represents the
attribute vector and y is the corresponding class (y ∈ {−1, 1}) [20]. In order to classify positive and
negative examples, the main idea is to find a hyperplane that performs their separation by splitting the
input space X into two half spaces, each containing instances of the same class.
The SVM algorithm operates the classification task, using a function:

f (x) = 〈w · x〉+ b

where b is the bias and w represents the vector normal to the separating hyperplane.
The sign function of f represents the decision function that we use for classification: the input vector
x is assigned to the positive class if f (x) ≥ 0, and to the negative class otherwise. In other words,
the example (x , y) is classified correctly if: y · f (x) > 0 (i.e y and f (x) have the same sign). While
f (x) = 0 corresponds to the input vectors x that lie on the hyperplane [3].

The separating hyperplane H is defined by the equation 〈w · x〉 + b = 0, so we consider that all
examples (x i, yi) satisfy the following constraints:

〈w · x i〉+ b ≥ +1 for yi = +1
〈w · x i〉+ b ≤ −1 for yi = −1

These constraints can be rewritten as:

yi · (〈w · x i〉+ b) ≥ +1 ∀i (5)

If the examples are linearly separable, it is always possible to find many hyperplanes. However, the
support vector machine method looks for an optimal hyperplane H that maximizes the distance of the
closest examples from both sides of the space to it. This distance is called margin and the SVM model
that aims to maximize the margin is known as the maximal margin classifier. By maximizing the margin,
this model guarantees a good generalization [2].
Furthermore the distance that separates an example (x i, yi) from the hyperplane is given by the following
equation:

di =
|〈w·xi〉 + b|
‖w‖

which, when performing binary classification, can be written as:

di =
yi (〈w·xi〉+b)

‖w‖

Hence the margin is:
1
‖w‖

So to find a hyperplane that maximizes the margin, ‖w‖ should be minimized, which is equivalent to
solve the following quadratic optimization problem:
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minimize ‖w‖2

yi · (〈w.x i〉+ b)≥ 1 i = 1, ..., N (6)

This constrained problem is a primal optimization problem that can be solved with the help of the
method of Lagrange multipliers. This method aims to minimize a function subject to equality constraints
by adding the objective function to a linear combination of the constraints:

Lp =
1

2
〈w.w〉 −

N
∑

i=1

αi [yi (〈w.x i〉+ b)− 1] (7)

where αi ≥ 0 are the coefficients of the combination and they are called the Lagrange multipliers. Lp
is known as the primal Lagrangian. Minimizing Lp is equivalent to maximizing the corresponding dual
problem; this can be obtained by differentiating Lp with respect to w and b. We obtain:

N
∑

i=1
yiαi = 0

w −
N
∑

i=1
yiαi x i = 0 ⇔ w =

N
∑

i=1
yiαi x i

After that the weight vector w is described as a linear combination of the training points, the function f
can be rewritten as follows:

f (x) =
N
∑

i=1
yiαi〈x i.x〉+ b

The relations obtained by differentiating Lp are plugged into the primal equation to form the correspond-
ing dual Lagrangian:

Ld =
N
∑

i=1

αi −
1

2

N
∑

i, j=1

yi y jαiα j 〈x i.x j〉 (8)

The dual Ld is then maximized with respect to Lagrange multipliers αi subject to the constraints:

N
∑

i=1
yiαi = 0 and αi ≥ 0

The optimal solution αi of the dual problem must satisfy the following equation:

αi [yi (〈w · x i〉+ b)− 1] = 0 i = 1, ..., N

By observing the solutions of the optimization problem, we notice that most parameters αi are zero.
These correspond to the x i for which yi (〈w.x i〉+ b)> 1, they lie away from the separating hyperplane
and have no effect on it.
Meanwhile, just a few solutions are non-zero. The set of x i whose αi are non-zero are called support
vectors [21]. They lie closest to the hyperplane, as it is shown in figure 6, and satisfy:

yi (〈w.x i〉+ b) = 1

2 [4] p. 216
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Figure 6: A maximum margin hyperplane.2

2.4.2 The non separable case: Soft margin

In most real-world problems, the data is not linearly separable, so the maximal margin model should
be modified to allow the misclassification of some examples. We introduce slack variables ξi ≥ 0 which
store the degree of misclassification of the data. This allows the constraints to be violated to get a soft
margin and we obtain the following optimization problem [2][3][19]:







minimize 1
2
‖w‖2 + C

N
∑

i=1
ξi

yi · (〈w.x i〉+ b)≥ 1− ξi i = 1, ..., N
(9)

C is the penalty factor, it determines the trade-off between the error (number of misclassified exam-
ples) and the width of the soft margin. The same dual Lagrangian Ld should be maximized subject to
the new constraints:

N
∑

i=1
yiαi = 0 and 0≤ αi ≤ C

The parameter C represents the upper bound on αi and is determined by the user. In general, choosing a
large C makes the margin smaller and allows just a few number of misclassified examples, while a small
value of C will have the opposite effect.

2.4.3 Non Linear Case: Kernels

In most cases, it is not possible to separate the data linearly, so the techniques described should be
extended to solve the classification problem by creating nonlinear decision boundaries. To achieve that,
it is possible to map the data into a high dimensional feature space F in which the linear classifiers can
be used [3][19].
We consider again the function:

f (x) =
N
∑

i=1
wφ(x) + b
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where φ is the mapping function that transforms the data into a feature space F . By expressing the
weight vector w with the use of the mapping function, the function f can be rewritten as a combination
of inner products between the test point and the training points [3]:

f (x) =
N
∑

i=1

αi yi〈φ(x i) ·φ(x)〉+ b (10)

Therefore to use the function, we need to map the examples to the feature space and compute the inner
product in this space. This kind of calculations can be extremely complicated in a high dimensional space.
The idea in SVM, is to replace the inner product 〈φ(x) ·φ(y)〉 by a function of the original samples in
the input space, and this avoids performing any type of mapping or calculation in the new space [2][19].
This function is called the kernel function. For all x , y ∈ X , it is defined as:

K(x , y) = 〈φ(x) ·φ(y)〉 (11)

There are different kernel functions that express the similarity from the inner product in the high
dimensional feature space. During the optimization of the parameters of the SVM algorithms presented
in section 3.3, one of the most popular kernel functions may be considered:

Polynomial kernel: K(x , y) = (〈x · y〉+ c) d where c is a positive constant and the parameter d is
the degree of the kernel.

Radial-basis function kernel: K(x , y) = e−γ‖x−y‖2 where γ is the parameter that controls the width
of the kernel.

Sigmoid kernel: K(x , y) = tanh (γ〈x · y〉+ c)
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3 Experiments: Tuning algorithms parameters

In this section, we evaluate the implementations of the learning techniques presented in section 2.
This is operated by optimizing the parameters of the algorithms in order to get the best accuracy values
for a set of fixed learning problems obtained. We will use the Weka Experiment Environment [22], which
enables the user to run different learning algorithms with various parameter settings on a set of different
learning problems [4]. We will explain the role of the relevant parameters in the next sections. The
remaining parameters will be used with their default settings, and they will be removed when exposing
the results.

In the next section, we will introduce the datasets used during the experiments 3. The algorithms as
well as the results of the different parameter settings will be presented in the following sections. The
results are stated in tables 4, 5, 6, 7 and 8: for every dataset, we give the best accuracy value obtained
during the evaluation along with the corresponding parameter setting.

3.1 Datasets

The experiments are performed on a set of 21 learning problems (datasets), presented in table 3.
Most of the datasets contain both numerical and nominal attributes. Six datasets don’t have numeric
attributes: car, contact-lenses, dbworld_subjects_stemmed, glass, solar-flare-c, solar-flare-m.
Seven datasets have a large number of numeric attributes (10 or more): heart-statlog, segment, sonar,
spectrometer2, vehicle, vowel.

As we focus on binary as well as multiclass classification, both learning problems should be repre-
sented in our evaluation set: we have 6 binary and 15 multilabel datasets.
Three Datasets have a large number of classes (10 or more): spectrometer2, vowel, yeast.

3 These data sets are available from [23] and https://research.cs.wisc.edu/dbworld/
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Table 3: Datasets used for the parameters optimization.

Dataset # Instances # Classes # Nominal Att. # Numeric Att.

anneal 898 6 33 6

balance-scale 625 3 1 4

car 1728 4 7 0

contact-lenses 24 3 5 0

german_credit 1000 2 14 7

dbworld_subjects_stemmed 64 2 230 0

pimadiabetes 768 2 1 8

glass 214 7 10 0

heart-statlog 270 2 1 13

ionosphere 351 2 1 34

iris 150 3 1 4

lymphography 148 4 16 3

segment 2310 7 1 19

solar-flare-c 1712 6 11 0

solar-flare-m 1389 6 11 0

sonar 208 2 1 60

spectrometer2 531 48 3 100

vehicle 846 4 1 18

vowel 990 11 4 10

yeast 1484 10 1 8

zoo 101 7 17 1
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3.2 Symbolic algorithms

In general the symbolic algorithms that implement the decision tree or rule learning schemes are used
with their default settings, and in most cases this does not achieve the best results. In this section we
optimize the important parameters of each algorithm in order to improve the accuracy.

3.2.1 J48

The J48 algorithm is a weka implementation of the C4.5 decision tree learner described in section
2.1.3. It has many options, and we will try to optimize the following ones by combining all the values
below:
The parameter M represents the minimum number of instances per leaf. Choosing a small number has
the effect of obtaining a specific tree, while increasing it produces more general trees. This parameter
will have 11 different values during the experiments: 1, 2, 3, 4, 5, 6, 10, 20, 30, 60 and 100.
The parameter C corresponds to the confidence factor used for pruning. The confidence factor is used
for pruning. The default value for the C4.5 decision tree learner is 0.25. Smaller values incur more
pruning and produce more generalized trees. We will use 12 values for this parameter: 0.005, 0.01,
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75 and 0.99.
The parameter B determines whether to use binary splits on nominal attributes when building the trees.
There is no difference for nominal binary attribute. For nominal attributes that have multiple values, this
option will creates only two branches for each attribute, if it is set to true. The parameter A determines
whether counts at leaves are smoothed based on Laplace. We prevent the predicted probabilities from
being calculated as zero, by using Laplace smoothing when setting A to true 4.
The default setting is false for both parameters A and B. If one of them is turned on, the corresponding
letter will written in the fourth column of table 4, which exposes the results for the whole set of our
learning problems.

Figures 7 and 8 show the variation of accuracy depending on values of M and C, for the data vowel
and heart. A and B are both set to false on these examples.

4 https://monk.library.illinois.edu/cic/public/analytics/decisiontree.html
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Figure 7: Variation of the accuracy depending on the C and M parameters for the heart data.

Figure 7 shows that a higher accuracy is reached when performing more pruning on the heart data.
Figure 8 indicates that for the vowel data, the best accuracy is obtained with a high value of C (equivalent
to less pruning). In both examples, the accuracy decreases for M greater than 10.

Figure 8: Variation of the accuracy depending on the C and M parameters for the vowel data.
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Table 4: Best accuracy values obtained by J48, with the corresponding parameter settings. The columns
represent in the following order: the datasets, the confidence factor (C), the minimum number

of instances per leaf (M) and the binary split (B) or Laplace (A) options. The last column
corresponds to the best accuracy value.

Datasets C M B / A Accuracy (%)

anneal 0.75 1 99.888

balance-scale 0.5 1 80.002

car 0.75 1 B 98.553

contact-lenses 0.01 3 85

german_credit 0.2 20 B 73.2

dbworld_subjects_stemmed 0.3 4 88.095

pima_diabetes 0.75 60 76.57

glass 0.25 1 69.523

heart-statlog 0.05 10 83.703

ionosphere 0.25 2 91.46

iris 0.2 2 96

lymphography 0.3 6 B 81

segment 0.5 1 97.532

solar-flare-c 0.3 3 B 85.573

solar-flare-m 0.01 1 95.104

sonar 0.05 6 75.476

spectrometer2 0.1 6 49.531

vehicle 0.4 10 74.47

vowel 0.75 1 87.676

yeast 0.01 3 58.55

zoo 0.1 1 94.181
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3.2.2 RandomForest

RandomForest is the Java implementation for generating a forest of random trees. We will try to
optimize the following parameters by combining all the values listed below:
The parameter I sets the number of trees to be constructed. We will use 11 values for this parameter
during the experiments: 5, 10, 20, 30, 50, 75, 100, 250, 350, 500 and 700. The default value is 10.
The maximum depth of the trees is determined by the parameter depth. The following values will be
tested for this parameter: 0 (which is the default setting and corresponds to unlimited depth), 2, 3, 5,
10, 20 , 30, 50, 75 and 100.
We will also optimize the parameter K that defines the number of attributes considered in random
selection. 12 values will be tested during the experiments: 0 (default value), 1, 2, 3, 4, 5, 7, 10, 15, 20,
50 and 100. If this parameter is left to its default setting, log(M)+1 attributes will be used, where M is
the number of inputs. Table 5 exposes the results for the whole dataset.

Figure 9 shows the variation of accuracy depending on the number of trees (I) and their depth
(Depth) for the data vowel and heart. The number of features (K) is left to default. When using a
depth value greater than 10, the accuracy does not change for this data. We notice that using more
trees produces better accuracy than when using the default value (10). In this example, the best results
are obtained when running the algorithm with the default depth of the trees or for depths greater than 5.

Figure 9: Variation of the accuracy depending on the I and depth parameters for the vowel data.
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Table 5: Best accuracy values obtained by RandomForest, with the corresponding parameter settings.

Datasets # Trees # Features Depth Accuracy (%)

anneal 350 10 20 99.776

balance-scale 100 1 5 88.476

car 75 2 10 95.66

contact-lenses 5 0 2 86.666

german_credit 250 10 10 77.5

dbworld_subjects_stemmed 20 20 3 92.619

pima_diabetes 250 2 30 77.479

glass 350 3 10 81.32

heart-statlog 50 0 2 85.185

ionosphere 20 5 5 95.452

iris 20 4 5 95.999

lymphography 700 4 0 87.047

segment 100 0 10 98.181

solar-flare-c 350 0 5 85.981

solar-flare-m 350 0 3 95.104

sonar 75 1 10 87.999

spectrometer2 250 0 20 58.567

vehicle 75 0 10 77.072

vowel 250 3 10 98.686

yeast 500 1 20 63.409

zoo 20 2 10 97.09
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3.2.3 JRip

JRip is the Java implementation of the RIPPER rule learner described in section 2.3.3. It has many
options, and we will try to optimize the following ones by combining all the values listed below:
The parameter F determines how the data will be split to form the growing and the pruning sets. The
default value is 3, which means that one fold is used for pruning and 2 folds for growing the rules. We
will use 4 values for F: 2, 3, 5 and 10.
The number of optimizations is determined by the parameter O. It will be tested with 12 values: 1, 2, 3,
5, 10, 20, 50, 80, 100, 200, 400 and 600. The default setting of this parameter is 2.
The parameter N sets the minimum total weight of the instances in a rule. We will use 9 values for this
parameter: 1, 2, 3, 4, 5, 6, 10, 20 and 30. The default setting is 2.
The stopping criterion of the Ripper algorithm includes the error rate test by default (accepting just the
rules which for the error rates don’t exceed 50%). This test can be excluded by setting the parameter E
to false.
The parameter P determines whether to perform pruning. Its default value is true. If it is turned to false,
the parameter F will not be relevant.
During the experiments, the check error rate parameter E and the pruning parameter P will not be set
both to false in the same test. As their default setting is true, if one of them is turned off, the word No
will be written in the corresponding cell in table 6, which exposes the results for the whole set of our
learning problems.

We notice that for more than the half of our dataset (11 data), the maximum accuracy is obtained
after 5 or less optimizations.
Figure 10 shows the variation of the accuracy for 4 data depending on the number of optimizations O.
For the dbworld_subjects_stemmed data, the maximum accuracy is reached after one optimization. The
same result is observed for 7 data (the third of the data used).

Figure 10: Variation of the accuracy depending on the O parameter for different data.
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Figure 11 shows the variation of accuracy depending on the values of F and N for the contact-
lenses data, where the optimization parameter is set to 1. We notice that performing less pruning
(equivalent to a high F) on the contact-lenses data produces a higher accuracy. The maximum accuracy
is obtained when no pruning is used. In this example, the accuracy does not change for N greater than 10.

Figure 11: Variation of the accuracy depending on the F and N parameters for the contact-lenses data.
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Table 6: Best accuracy values obtained by JRip, with the corresponding parameter settings. The columns
represent in the following order: the datasets, the number of folds (F), the minimum total
weight of the instances in a rule (N), the number of optimizations (O), the check error rate
option (E) and the pruning option. The last column corresponds to the best accuracy value.

Datasets F N O E Pruning Accuracy (%)

anneal 2 1 1 No 99.441

balance-scale 2 2 1 82.096

car 3 1 600 No 90.277

contact-lenses 2 3 1 No 84.999

german_credit 2 20 20 75

dbworld_subjects_stemmed 3 1 1 86.428

pima_diabetes 2 30 10 No 77.73

glass 5 2 200 75.259

heart-statlog 2 10 400 No 82.222

ionosphere 3 4 1 91.476

iris 2 1 3 97.333

lymphography 5 1 1 83.809

segment 5 3 200 No 96.666

solar-flare-c 2 1 1 85.573

solar-flare-m 3 4 5 No 95.32

sonar 2 2 50 81.238

spectrometer2 5 1 400 43.871

vehicle 10 2 100 No 74.116

vowel 2 1 600 No 79.393

yeast 5 1 2 60.036

zoo 2 1 3 91.181
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3.3 Support Vector Machine

In this section, we focus on two algorithms used for training vector machines: the SMO algorithm
suggested by [24], and the LibSVM library described in [25]. The penalty factor C (see section 2.4.2) is
the most important parameter for our classification task.
We will use 14 values for C in our experiments:
10−5, 10−4, 10−3, 10−2, 10−1, 0.5, 1, 2, 10, 100, 1000, 2000, 5000 and 8000.

3.3.1 SMO

Sequential minimal optimization (SMO) is an SVM learning algorithm that divides the quadratic
programming problem (see (9)) into multiple small problems, which makes the algorithm faster [24].
Moreover, some modifications are proposed by [20] to improve the performances of SMO.

In what follows, we define some kernels used by the SMO algorithm, and we determine which values
will be tested for the parameters of every kernel during the experiments. The parameter N determines
whether to normalize (N=0 which is the default setting), to standardize (N=1) the training data, or if
no transformation is performed (N=2).
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RBF Kernel:
K(x , y) = e−γ‖x−y‖2

γ is the gamma parameter (corresponding to the parameter G). It will be tested with 20 different values:
0,2−13, 2−12, ..., 24, 25.

Figure 12 shows the variation of the accuracy depending on the parameters C and G for the anneal
data. In this example, N is left to its default setting, so the training data are normalized.

The first thing to notice is that for all the values of G, the obtained curves have similar behavior. First,
there is a phase where the value of the accuracy remains constant and equal for all curves. In this figure,
for C ≤ 10−2, we see that the accuracy is equal to 76.169% for all values of G. Then there is a transition
phase, where the accuracy grows with the value of C. We point out here that this transition starts as soon
as C becomes higher than a certain threshold, which is different for each value of G. For instance, this
threshold is equal to 10−1 for G=2−7 and G=25 and greater than 1 for G=2−11. Moreover, the transition
phase is more or less sharp according to the value of G. In this example, the transition is smoother for
G=2−11, G=2−7 and G=2−3 than for G=21 and G=25.

Finally all curves are stabilized for C greater than a certain threshold. The value of this threshold is
significantly dependent on G. It is equal to 103 for G=2−7 and G=2−3 whereas it is less than 10 for
G= 21 and G=25. Furthermore, the value at which the accuracy is stabilized differs from one value
of G to another. For G ∈ {2−11, 2−7, 2−3}, the best accuracy is almost reached, while it is stabilized to
96.546% and 84.856% for G=21 and G=25 respectively.

Figure 12: Variation of the accuracy depending on the C and G parameters of the RBF kernel for the
anneal data.
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Polykernel:
K(x , y) = 〈x · y〉 E or K(x , y) = (〈x · y〉+ 1) E

The parameter E sets the exponent of the kernel. We will use 5 values for E during the experiments: 1,
2, 3, 4 and 5. The parameter N will be set to zero for this kernel; that means that the training data will
be normalized.

Figure 13 shows the variation of the accuracy depending on the parameters C and E for the glass data.
We notice that there is a phase where the value of the accuracy remains constant and the same for all
the curves. In this figure, for C ≤ 10−3, we see that the accuracy is equal to 35.519% for all the values
of E. Then there is transition phase, where the accuracy grows with the value of C. We point out here
that this transition starts as soon as C becomes higher than a certain threshold, which is different from
one value of E to another. For instance, this threshold is equal to 10−3 for E=4 and E=5 and to 10−2 for
smaller values of E.

Furthermore, the transition phase is more or less sharp according to the value of E. In this example,
the transition is smoother for small exponents (E=1, E=2 and E=3) than for the curves corresponding
to E=4 and E=5 where it changes sharply.

Unlike the RBF kernel in figure 12, the curves are not stabilized when using the polykernel on the
glass data. Mostly all curves attain their maximum at a certain C threshold and start to decrease
afterwards. We also notice that the curve corresponding to E=1 attains worse results than the other
exponents. The best accuracy in this example (75.606%) is reached by E=2 when C=2000.

Figure 13: Variation of the accuracy depending on the C and E parameters of the polykernel for the
glass data.
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Normalized Polykernel:
K(x , y) =

<x ,y>p
(<x ,x>.<y,y>)

where < x , y >= Pol yKernel(x , y)

The polykernel is used in the normalized polykernel. Seven values will be tested for the exponent
parameter E: 2, 3, 4, 5, 6, 7 and 8.

Figure 14 shows the variation of the accuracy depending on the parameters C and E for the sonar data.
In this example, the parameter N is left to its default setting, so the training data are normalized.

The first thing to notice is that for all the values of E, the obtained curves have similar behavior. First,
there is a phase where the value of the accuracy remains constant and the same for all the curves. In this
figure, for C ≤ 10−2, we see that the accuracy is equal to 53.38% for all the values of E.
Then there is transition phase, where the accuracy grows with the value of C. We point out here that
this transition starts as soon as C becomes higher than a certain threshold, which is the same for all the
values of E. For instance, this threshold is equal to 10−2. We notice that the transition phase is more or
less sharp for the different exponents.

Finally all the curves are stabilized for C greater than 102. The value at which the accuracy is
stabilized differs from one value of E to another. For E=7 and E=8 this value is clearly higher than for
smaller exponents. In this example, the best accuracy (89.88%) is reached by E=7 when C=100.

Figure 14: Variation of the accuracy depending on the C and E parameters of the normalized polykernel
for the sonar data.
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In table 7, we present the results of the experiments run by the SMO algorithm on the whole dataset.

Table 7: Best accuracy values obtained by SMO, with the corresponding parameter settings. The
columns represent in the following order: the datasets, the soft margin parameter (C), the

kernel type, the gamma or the exponent parameter (G or E) and the filter type (N). The last
column corresponds to the best accuracy value.

Datasets C Kernel type G / E N Accuracy (%)

anneal 100 RBF 2−7 0 99.555

balance-scale 2000 RBF 2−3 0 100

car 10 Normalized polykernel 3 1 100

contact-lenses 100 RBF 2−3 0 78.333

german_credit 1000 RBF 2−11 1 78.3

dbworld_subjects_stemmed 2 RBF 2−9 1 92.619

pima_diabetes 5000 RBF 2−8 0 78.253

glass 2000 Polykernel 2 0 75.606

heart-statlog 0.1 RBF 2−5 1 85.185

ionosphere 0.5 Normalized polykernel 8 2 96.293

iris 10 RBF 2−6 2 98.666

lymphography 10 RBF 2−10 1 88.523

segment 1000 RBF 2−12 2 97.619

solar-flare-c 10−4 Polykernel 5 0 86.098

solar-flare-m 10−4 RBF 2−11 0 95.104

sonar 100 Normalized polykernel 7 0 89.88

spectrometer2 1000 Normalized polykernel 2 2 71.942

vehicle 1000 RBF 2−2 0 86.176

vowel 10 RBF 2−1 2 99.797

yeast 2 RBF 24 2 60.912

zoo 10 RBF 2−3 2 98
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3.3.2 LibSVM

LibSVM (Library for Support Vector Machines) is a software for SVM developed by [25]. It can be used
for both classification and regression. The integration of the LibSVM classifier into Weka Environment is
realized by [26].

In what follows, we define some kernels used by the LibSVM algorithm, and we determine which
values will be tested for the parameters of every kernel during the experiments.
The parameter N determines whether to normalize the input data. Its default value is false.
G sets the gamma parameter. If it is left to its default value (which is 0), 1

maxindex
is used instead.

Linear kernel:
K(u, v ) = u′ · v

Sigmoid kernel:
K(u, v ) = tanh(γ · u′ · v + R )

The gamma parameter G will be tested with 20 different values: 0, 2−13, 2−12, ..., 24, 25.
The parameter R (which default value is 0) will be tested with 3 values: -1000, 0 and 1000 for this
kernel.
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Polykernel:
K(u, v ) = (γ · u′ · v + R )D

The parameter D sets the degree of the kernel. We will use 5 values for this parameter during the
optimization: 1, 2, 3, 4 and 5.
As it is the case for the Sigmoid kernel, the parameter R will be tested with 3 values: -1000, 0 and 1000,
while G will be left to its default setting.

Figure 15 shows the variation of the accuracy depending on the parameters C and for the balance-scale
data. In this example, the input data are not normalized and R is set to 0.

We notice that there is a phase where the accuracy grows with the value of C. This transition occurs
sharply for the curve corresponding to D=1 in comparison with the other curves. We also notice that the
accuracy is dependent on D: for small values of C, higher degrees attain a better accuracy. However, as
the value of C increases, this is reversed: a better accuracy is reached by small values of D (except D=1
which has clearly the worst results for all values of C).

After the transition phase, the curves are stabilized for C greater than a certain threshold which is
equal to 10 for all the curves. The value at which the accuracy is stabilized differs from one value of D
to another. It is stabilized to 100% for D=2, while it is stabilized to 91.671% for D=1.

Figure 15: Variation of the accuracy depending on the C and D parameters of the polykernel for the
balance-scale data.

32



RBF kernel:
K(u, v ) = exp(−γ · |u− v |2)

As it is the case for the Sigmoid kernel, we will use 20 values for the gamma parameter G.

Figure 16 shows the variation of the accuracy depending on parameters C and G for the lymphography
data. In this example, the input data are normalized.

The first thing to notice is that for all the values of G, the obtained curves have similar behavior. First,
there is a phase where the value of the accuracy remains constant and the same for all the curves. In this
figure, for C ≤ 10−2, we see that the accuracy is equal to 54.761% for all the values of G. Then there
is transition phase, where the accuracy grows with the value of C. We point out here that this transition
starts as soon as C becomes higher than a certain threshold, which is different from one value of G to
another. The transition phase is rather sharp for the different values of G.

Finally all the curves are stabilized for C greater than a certain threshold. The value of this threshold
is significantly dependent on G. It is equal to 10 for G=2−7 and G = 2−3 whereas it is equal to 5000 for
G=2−13 and G=2−11. Furthermore, the value at which the accuracy is stabilized differs from one value
of G to another. The best accuracy (89.857%) is reached by G=2−11 when C=5000, while the curves
corresponding to bigger values of G are stabilized to worse accuracy.

Figure 16: Variation of the accuracy depending on the C and G parameters of the rbf kernel for the
lymphography data.
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In table 8, we present the results of the experiments run by the LibSVM algorithm on the whole dataset.

Table 8: Best accuracy values obtained by LibSVM, with the corresponding parameter settings. The
columns represent in the following order: the datasets, the soft margin parameter (C), the

kernel type, the gamma or the degree parameter (G or D) and the normalize option. The last
column corresponds to the best accuracy value.

Datasets C Kernel type G / D Normalize Accuracy (%)

anneal 2000 Polykernel 2 Yes 99.444

balance-scale 10 Polykernel 2 100

car 10 RBF 2−1 99.884

contact-lenses 100 Polykernel 2 83.333

german_credit 5000 Polykernel 1 Yes 77

dbworld_subjects_stemmed 1 Sigmoid 22 94.285

pima_diabetes 10 Polykernel 1 78.257

glass 5000 RBF 2−1 Yes 74.653

heart-statlog 100 Polykernel 3 Yes 85.185

ionosphere 100 RBF 2−1 95.174

iris 10 RBF 2−6 98.666

lymphography 5000 RBF 2−11 Yes 89.857

segment 100 RBF 2−12 97.532

solar-flare-c 1 RBF 22 85.922

solar-flare-m 1 Polykernel 2 95.104

sonar 10 RBF 2−2 Yes 89.404

spectrometer2 10−4 Polykernel 1 71.757

vehicle 1000 RBF 2−2 Yes 86.294

vowel 2 RBF 20 99.797

yeast 2 RBF 24 60.845

zoo 0.5 linear - 96.09
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4 Comparing the algorithms

4.1 Average, standard deviation and variance

In this section, we compare the sensitivity of the different algorithms. First, the accuracy measures ob-
tained from the different parameter settings of each algorithm for the whole set of data will be averaged.
Then the variance Var and the standard deviation SD measures will be computed:

Var =

N
∑

i=1
(X − X i)2

N − 1
(12)

where N is the number of parameter settings (P) tested for a given algorithm (A) multiplied by the
number of datasets (21), X i is the accuracy of the i th experiment run by A, and X is the average of all
accuracy measures obtained for A.
The standard deviation is the square root of the variance. It shows the variation from the average: In
our comparison, a high standard deviation value means that the accuracy measures obtained spread out
over a large range, while a low deviation indicates that these measures are close to the average. The
results are stated in table 9.

Table 9: Calculation of the average (X), the variance (Var) and the standard deviation (SD) of every
algorithm over the whole dataset.

J48 Random Forest JRip SMO LibSVM

P 528 1320 1296 1204 2688

N 11088 27720 27216 25284 56448

X (in %) 75.853 80.223 75.796 68.774 58.3

Var 245.078 222.619 264.655 505.177 634.991

SD 15.654 14.92 16.268 22.476 25.199

Moreover, we will compute the standard deviation between the accuracy measures obtained from the
different parameter settings of each algorithm for every dataset. The results are stated in table 10: The
columns represent the different algorithms. For every dataset, we give the maximal accuracy in the first
row, the minimal in the second row, the average value in the third row and the standard deviation in the
last one.
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Table 10: An overview of the maximal-, the minimal-, the average accuracy and the standard deviation
of every algorithm for the single data.

Datasets J48
Random
Forest

JRip SMO LibSVM

anneal 99.888 99.776 99.441 99.555 99.444
81.962 76.169 91.423 76.058 64.795
95.827 96.823 96.994 86.189 79.135
4.611 5.813 1.86 9.716 8.481

balance-scale 80.002 88.476 82.096 100 100
64.493 72.956 71.208 19.859 4.966
73.325 81.38 78.376 80.537 64.22
4.486 2.019 1.998 16.529 21.577

car 98.553 95.66 90.277 100 99.884
76.565 70.023 74.133 70.023 49.592
88.398 90.918 82.878 82.314 73.738

6.6 6.454 4.23 13.605 11.026

contact-lenses 85 86.666 84.999 78.333 83.333
53.333 58.333 58.333 38.333 49.999
75.024 72.28 70.115 68.481 68.682
7.907 3.623 5.297 4.287 4.283

german_credit 73.2 77.5 75 78.3 77
65.7 69.8 68.4 61.2 36.5

70.423 74.47 72.415 70.857 68.374
1.413 1.83 0.995 2.624 5.934

dbworld_subjects_stemmed 88.095 92.619 86.428 92.619 94.285
54.523 55.952 54.523 43.809 15.238
72.091 82.324 76.864 63.663 62.455
13.789 7.588 10.578 13.811 15.581

pima_diabetes 76.57 77.479 77.73 78.253 78.257
72.13 68.62 71.883 60.415 37.889
74.392 74.916 74.32 68.224 65.257

0.98 1.117 1.094 4.495 7.065

glass 69.523 81.32 75.259 75.606 74.653
35.519 57.64 41.623 35.519 21.515
60.506 74.885 64.228 51.714 42.418
9.121 5.151 6.876 14.981 12.695

heart-statlog 83.703 85.185 82.222 85.185 85.185
72.222 75.555 68.518 55.555 23.333
76.694 80.462 77.682 65.897 60.093
3.095 2.162 2.202 11.291 10.565

ionosphere 91.46 95.452 91.476 96.293 95.174
74.087 84.333 80.373 64.103 39.587
88.32 92.609 89.342 78.517 69.534
4.684 1.254 1.761 13.38 12.154

iris 95.999 95.999 97.333 98.666 98.666
33.333 87.999 33.333 33.333 0
86.418 95.136 93.479 86.955 59.472
18.617 0.73 8.773 14.059 32.025

36



Datasets J48
Random
Forest

JRip SMO LibSVM

lymphography 81 87.047 83.809 88.523 89.857
54.761 71.523 54.761 54.761 26.999
72.998 81.068 72.617 67.599 60.541
7.157 3.173 4.577 14.005 12.441

segment 97.532 98.181 96.666 97.619 97.532
89.09 69.437 89.004 14.285 0

94.674 94.34 94.865 77.206 43.103
2.441 6.421 1.268 23.734 35.399

solar-flare-c 85.573 85.981 85.573 86.098 85.922
84.055 83.47 83.703 83.877 30.804
85.076 84.55 85.098 85.193 83.941
0.268 0.496 0.352 0.273 5.5

solar-flare-m 95.104 95.104 95.32 95.104 95.104
92.729 92.945 94.313 92.153 48.041
95.017 93.833 95 94.433 94.16
0.313 0.694 0.158 0.873 4.349

sonar 75.476 87.999 81.238 89.88 89.404
53.38 62.999 64.357 53.38 33.571

70.146 80.919 73.88 67.857 59.418
5.627 3.599 3.738 14.465 10.979

spectrometer2 49.531 58.567 43.871 71.942 71.757
13.19 10.359 10.359 10.359 5.461

42.659 43.345 31.027 21.079 16.75
7.577 13.851 8.538 17.245 17.56

vehicle 74.47 77.072 74.116 86.176 86.294
65.488 54.844 55.326 25.648 15.721
71.079 72.99 66.99 51.589 38.207
2.947 4.457 3.238 24.558 21.475

vowel 87.676 98.686 79.393 99.797 99.797
33.838 25.858 27.07 9.09 6.06
67.523 85.989 66.288 69.405 30.707
16.125 18.932 10.998 29.642 32.97

yeast 58.55 63.409 60.036 60.912 60.845
51.547 40.763 50.405 31.131 13.072
56.167 58.359 55.34 45.408 37.666
1.803 4.42 2.988 12.742 11.814

zoo 94.181 97.09 91.181 98 96.09
40.636 42.636 40.636 40.636 23.727
76.154 73.077 73.911 61.139 46.43
19.685 23.01 19.871 25.041 17.532

4.2 Default settings and optimized parameters

In this section, we compare the accuracy values obtained when running the algorithms with their
default settings and after the optimization. The results are stated in table 12: the columns represent the
different algorithms. For every dataset, we give the maximal accuracy in the first row, and the accuracy
corresponding to the default settings of each algorithm in the second row.
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Table 12: An overview of the maximal accuracy and the accuracy corresponding to the default settings
of every algorithm for the single data.

Datasets J48
Random
Forest

JRip SMO LibSVM

anneal 99.888 99.776 99.441 99.555 99.444
98.439 99.332 98.329 97.439 90.087

balance-scale 80.002 88.476 82.096 100 100
76.653 82.237 79.05 87.677 89.754

car 98.553 95.66 90.277 100 99.884
92.362 93.519 86.457 93.75 96.354

contact-lenses 85 86.666 84.999 78.333 83.333
81.666 81.666 74.999 71.666 63.333

german_credit 73.2 77.5 75 78.3 77
70.5 74.3 71.7 75.1 70

dbworld_subjects_stemmed 88.095 92.619 86.428 92.619 94.285
75.714 86.666 86.428 87.857 54.523

pima_diabetes 76.57 77.479 77.73 78.253 78.257
73.834 73.438 76.037 77.344 65.105

glass 69.523 81.32 75.259 75.606 74.653
66.753 73.831 68.658 56.125 68.766

heart-statlog 83.703 85.185 82.222 85.185 85.185
76.666 81.111 78.888 84.074 55.925

ionosphere 91.46 95.452 91.476 96.293 95.174
91.46 94.595 89.753 88.603 93.46

iris 95.999 95.999 97.333 98.666 98.666
95.999 94.666 95.333 95.999 96.666

lymphography 81 87.047 83.809 88.523 89.857
76.952 80.333 77.761 86.428 79.809

segment 97.532 98.181 96.666 97.619 97.532
96.926 97.662 95.411 93.073 65.367

solar-flare-c 85.573 85.981 85.573 86.098 85.922
85.105 84.346 85.397 85.163 85.163

solar-flare-m 95.104 95.104 95.32 95.104 95.104
95.104 93.736 94.745 95.104 95.104

sonar 75.476 87.999 81.238 89.88 89.404
71.166 80.238 73.071 75.952 65.904

spectrometer2 49.531 58.567 43.871 71.942 71.757
47.449 49.346 31.656 51.418 10.359

vehicle 74.47 77.072 74.116 86.176 86.294
72.469 75.417 69.04 74.364 30.495

vowel 87.676 98.686 79.393 99.797 99.797
81.515 94.141 70.101 71.414 88.484

yeast 58.55 63.409 60.036 60.912 60.845
55.991 58.619 58.081 57.075 43.262

zoo 94.181 97.09 91.181 98 96.09
92.181 91.09 87.272 96.181 49.636
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4.3 Statistical comparison - Significance test

In this section we use Friedman and Nemenyi tests to compare the algorithms. This procedure is
based on average ranks and is described in detail in [27]. During our experiments, we used k = 5
algorithms and N = 21 data sets. First, the algorithms are ranked for each dataset according to their
accuracy. Average ranks are assigned in case of ties between some algorithms. The results are stated in
table 13. For each dataset, we give the accuracy in the first row and the rank of each algorithm in the
second row. After that, the average ranks of the different algorithms are computed (see table 14).

The null hypothesis of the Friedman Test assumes that the different algorithms perform equally well,
so the average ranks should not be significantly different.
We start with calculating the critical value of the F-distribution with (k−1) = 4 and (k−1)(N −1) = 80
degrees of freedom at different alpha levels, and compare them with the Friedman test statistic FF from
[28]. We obtain FF = 15.08. The critical value of the F-distribution for level α = 0.01 is 3.563, so we
reject the null hypothesis and then we perform the post-hoc Nemenyi test [29] by computing the critical
difference:

C D = qα

Ç

k(k+1)
6N

where qα is the critical value at level α.
If the average ranks of two algorithms differ by at least the critical difference, we consider that their
performances are significantly different. Figure 17 shows that we can identify two groups of classifiers
that are not significantly different in our test (C D = 1.588 at α = 0.01). Classifiers that belong to the
same group are connected together.

Figure 17: Results of the significance test.

39



Table 13: Ranking of the algorithms for each data.

Datasets J48
Random
Forest

JRip SMO LibSVM

anneal 99.888 99.776 99.441 99.555 99.444
1 2 5 3 4

balance-scale 80.002 88.476 82.096 100 100
5 3 4 1.5 1.5

car 98.553 95.66 90.277 100 99.884
3 4 5 1 2

contact-lenses 85 86.666 84.999 78.333 83.333
2 1 3 5 4

german_credit 73.2 77.5 75 78.3 77
5 2 4 1 3

dbworld_subjects_stemmed 88.095 92.619 86.428 92.619 94.285
4 2.5 5 2.5 1

pima_diabetes 76.57 77.479 77.73 78.253 78.257
5 4 3 2 1

glass 69.523 81.32 75.259 75.606 74.653
5 1 3 2 4

heart-statlog 83.703 85.185 82.222 85.185 85.185
4 2 5 2 2

ionosphere 91.46 95.452 91.476 96.293 95.174
5 2 4 1 3

iris 95.999 95.999 97.333 98.666 98.666
4.5 4.5 3 1.5 1.5

lymphography 81 87.047 83.809 88.523 89.857
5 3 4 2 1

segment 97.532 98.181 96.666 97.619 97.532
3.5 1 5 2 3.5

solar-flare-c 85.573 85.981 85.573 86.098 85.922
4.5 2 4.5 1 3

solar-flare-m 95.104 95.104 95.32 95.104 95.104
3.5 3.5 1 3.5 3.5

sonar 75.476 87.999 81.238 89.88 89.404
5 3 4 1 2

spectrometer2 49.531 58.567 43.871 71.942 71.757
4 3 5 1 2

vehicle 74.47 77.072 74.116 86.176 86.294
4 3 5 2 1

vowel 87.676 98.686 79.393 99.797 99.797
4 3 5 1.5 1.5

yeast 58.55 63.409 60.036 60.912 60.845
5 1 4 2 3

zoo 94.181 97.09 91.181 98 96.09
4 2 5 1 3
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Table 14: Average ranking of the algorithms.

Algorithms J48
Random
Forest

JRip SMO LibSVM

Average rank 4.095 2.5 4.119 1.88 2.404
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5 Summary and Conclusion

In this thesis, we presented various existing learning methods used for classification (decision trees,
random forests, rule learners and support vector machines). Then, we attempted to increase the
accuracy of the algorithms implementing these approaches by optimizing the relevant parameters of
each algorithm; this was achieved by running the different parameter settings on a fixed set of data and
comparing the results. During the experiments, we noticed that it is possible to reach better accuracy
when the parameters are carefully optimized. This is indicated in detail in table 12 which states, for
every data, both the best accuracy obtained after the optimization process and the accuracy obtained
when running the algorithms with their default settings.

When observing the results from table 10, we stated that the accuracy values and the variance highly
depend on the datasets. We also noticed that the symbolic approaches perform better on average for
the single data. The deviation from the average is also lower; this means that these algorithms are more
stable on the datasets, which is not the case for SVM methods (for example, LibSVM has a high variance
for all the data). We made a similar observation when analyzing the results from table 9, where we take
the whole dataset into account: we concluded that the SVM algorithms have a high variance and perform
worse on average than the other algorithms. Furthermore, we noticed that increasing the SVM cost pa-
rameter C generally produces better results. But the SVM technique was time consuming for our dataset
which contains 21 data: the smallest one contains 24 instances and the biggest one consists of 2310
examples. Therefore, it would be worthwhile to see how the different algorithms perform on bigger data.

During our experiments, the best results were obtained by the random forest algorithm: On the one
hand, when observing the resuls for single data (see table 10), this algorithm has a low deviation (similar
to the decision tree learner and the rule learner) and produces good accuracy values (similar to support
vector machines). On the other hand, when taking into account the whole data set (see table 9), the
random forest algorithm has the lowest variance value and the best average accuracy.

We did also perform a significance test to compare the different approaches. The results of this test are
represented in figure 17. It shows that the classifiers can be divided into two groups. The first groupe
consists of the RandomForest method and the SVM algorithms, which were not significantly different
in our experiments. Also, we did notice that J48 and JRip have similar results, and are generally less
accurate than the algorithms of the first group.
In conclusion, we expect that if we combine an ensemble of multiple classifiers, we might attain similar
results with support vector machines and have a lower variance as well.
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