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Abstract

Multi-label classification is a classification task assigning an arbitrary number of labels to an object. For example,
multiple genres like comedy or sci-fi may be assigned to a single movie. This work proposes an implementation
of an algorithm for learning multi-label rule lists. Multi-label rule lists are human understandable classification
models, which describe the relations between data and the labels assigned to it. Even though many properties
of single-label rule learning algorithms have been studied, not many works examine the optimal configurations
for multi-label head rule learning algorithms. This work introduces an implementation of a multi-label
head rule learner and presents experiments which determine the optimal hyperparameter configurations for
different environments. The implemented algorithm is based on an algorithm proposed by Loza Mencía and
Janssen (2016), adapted by Rapp (2016) to learn multi-label head rules and extended to further favor multi-
label head rules using relaxed pruning by Klein (2018). The proposed implementation incorporates multiple
approaches suggested in related work and suggests algorithmic improvements over a naive implementation of
the base algorithm. The evaluation of the predictive performance of the implemented algorithm shows that
the algorithm is capable of efficiently learning relatively short rule lists with a performance comparable to
other multi-label classification algorithms.
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1. Introduction

This initial chapter gives an overview of the content and structure of this work. The first section briefly
introduces the field of multi-label classification. After that, the objectives of this thesis and a short summary of
each chapter are presented.

1.1. Multi-Label Classification

Classification is one of the most relevant applications of supervised machine learning. The classification
problem may be divided into three domains; binary classification, multi-class classification and multi-label
classification.

• Binary classification:
Binary classification is the task of determining to which of two distinct classes an example belongs to.
For example, determining whether an email is spam or not belongs to this category.

• Multi-Class classification:
Multi-class classification is used when three or more classes exist and a given example shall be assigned to
exactly one of those classes. For example, determining which single animal is depicted on a photograph
belongs to this category.

• Multi-Label classification:
Multi-label classification is used when any given example is assigned to any number of a set of classes
or none of them. For example, determining which of a given set of topics a newspaper article is about
belongs to this category.

1.2. Goal of the Thesis

This thesis implements an efficient multi-label rule learning algorithm which provides accurate predictions
based on human readable rule lists, which assign labels to diverse input data. In order to achieve this, a
separate-and-conquer approach for learning multi-label rules combined with the relaxed pruning approach
proposed by Klein (2018) is implemented in this work. The influence of hyperparameter settings on different
data sets is then analyzed in order to find optimal configurations for various environments. Even though
some work related to implementing or tuning hyperparameters of multi-label head rule learners exists (cf.
Rapp (2016); Rapp, Loza Mencía, et al. (2018); Rapp, Loza Mencía, et al. (2019); Klein (2018)), more
extensive evaluation, especially for approaches using the relaxed pruning approach (see chapter 2.4.3) and
adapted multi-label evaluation metrics (see chapter 2.3.3) is conducted in this work. Furthermore, a more
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detailed implementation of the algorithm proposed by Rapp (2016) is introduced, including algorithmic
improvements over a naive implementation of the base algorithm.

1.3. Organization of the Thesis

In this chapter, the contents and objectives of each chapter are briefly described.

• Chapter 2:
This chapter introduces the formal definitions, notations and concepts which lay the foundation for
the rest of this thesis. This includes multi-label classification, problem transformation methods, label
dependencies, separate-and-conquer rule learning, different performance measures and averaging
strategies. Furthermore, two properties of multi-label evaluation functions, decomposability and anti-
monotonicity, are introduced.

• Chapter 3:
In this chapter, the implemented rule learning algorithm is introduced. This includes an implementation
of the rule induction process, refinement of rule conditions and the algorithms for head refinement.

• Chapter 4:
In this chapter, the performance of the algorithm with different hyperparameter settings is examined.
This includes a description of the experimental setup, tuned parameters, tested data sets, an analysis of
the obtained results and multiple figures showing the performance of the implemented algorithm with
different parameters. Furthermore, the characteristics of the obtained models are analyzed.

• Chapter 5:
This final chapter includes a summary of the results and contributions of this work as well as a composition
of possible future improvements of the implemented algorithm.

9



2. Fundamentals

This chapter introduces the basic concepts of multi-label classification and inductive rule learning. This
includes formal definitions, notations and explanations which lay the foundation for the algorithm presented
in this work.

2.1. Multi-Label Classification

Supervised machine learning is the task of learning a function, which will be called model in this work, that
maps an input X to an output Y based on example input-output pairs, called the training data set T (Mohri
et al., 2018).

T := {(X1, Y1), . . . , (Xi, Yi)} ∈ X× Y

The training data set consists of sets of values x corresponding to attributes A, each associated with an output
Y . These sets are called examples in this work and each example X assigns values to a fixed number j of
attributes A.

Xi := (x1, . . . , xj) ∈ X , with X = A1 × · · · ×Aj

In this work, nominal and numerical attributes are considered. Values of nominal attributes are discrete, e.g.
red or green, while the value of numerical attributes can be any number from a continuous value range
(Janssen, 2012; Fürnkranz, 1999).

Classification is an instance of supervised machine learning and corresponds to the problem of identifying to
which of a set of classes or labels a new example belongs, based on the training data set containing examples
whose assigned labels are known (Alpaydin, 2010). That means in classification, the output Y of the model
is one or several of a fixed set of classes. This set is called label vector in this work, in which each attribute
yi denotes the presence or absence of the corresponding label λi. The value 1 of a label yi denotes the
presence of the corresponding label λi and 0 denotes its absence (cf. Loza Mencía (2012); Loza Mencía and
Janssen (2016)).

Yi := (y1, . . . , yk) ∈ {0, 1}k , with k = |L|

These classes will be called labels in this work and their corresponding domain is the finite label space L.

L = {λ1, . . . , λk}

The learned model can be described as a classifier function that maps yet unknown examples to a prediction Ŷ
(Loza Mencía and Janssen, 2016):

f :

{︄
X → Y
X ↦→ Ŷ

10



2.1.1. Problem Transformation

Many approaches to multi-label classification include transforming the problem into multiple smaller single-
label or regression problems which are then solved in a conventional way (Loza Mencía, 2012; Read et
al., 2009). The most common of these problem transformation methods include:

• Binary Relevance: This method is based on training one binary classifier for each individual label to
predict its presence or absence. By decomposing the multi-label problem into k independent binary
subproblems, linear complexity with respect to the number of labels can be achieved using conventional
binary classifiers (M.-L. Zhang, Li, et al., 2017). In order to predict the labels for an unseen example,
the predictions of all classifiers have to be combined into one label vector. Because this method considers
each label individually, dependencies between labels (see 2.1.2) cannot be exploited in order to improve
classification performance (Read et al., 2009).

Ŷ = (f1(X), . . . , fk(X))

• Pairwise Decomposition: In this method, one binary classifier is trained for each pair of labels. Each
classifier then predicts which of these two label should be preferred over the other for each example (Loza
Mencía, 2012). This decomposes the multi-label classification problem into n(n−1)

2 binary subproblems.
In order to predict the labels for an unseen example, the predictions of each classifier are interpreted as a
vote for one of the corresponding labels. After aggregating these votes, the labels can be sorted by their
relevance to the given example. The labels which are then included in the final multi-label prediction
are all labels whose aggregated votes are above a defined threshold (Fürnkranz et al., 2008). A problem
with this approach is the quadratic number of classifiers which have to be trained and evaluated in
relation to the number of labels (Loza Mencía and Janssen, 2016).

• Label Powerset: In this method, each possible label combination which appears in the training data set
is considered as a separate class (Read et al., 2009). Given k different labels exist, 2k different label
combinations have to be considered in the worst case. This decomposes the multi-label classification
problem into a multi-class classification task with up to 2k classes. In order to predict the labels for an
unseen example, the label combination which is predicted by the multi-class classifier is used as the
resulting multi-label prediction. However, this method tends to overfit for small data sets, as only label-
combinations which appear in the training data set can be predicted by the resulting classifiers and the
computational complexity of this approach can become a prohibitive bottleneck (Spolaôr et al., 2013).

2.1.2. Label Dependencies

In many data sets, implicit dependencies between labels exist and exploiting these dependencies may yield an
enhanced performance (M.-L. Zhang and K. Zhang, 2010). For example, in a multi-label data set assigning
topics to newspaper articles, a dependency between the topics science and technology might exist. Label
dependencies can be divided into two classes; conditional and unconditional label dependencies (Dembczynski
et al., 2012). If the dependencies do not depend on certain attributes in the data set, they are called
unconditional or global. If they do depend on certain attributes of specific examples and thus only exist for
a subset of the training data, they are called conditional or local (Loza Mencía, 2012). The dependency in
the previously shown example is unconditional as the dependency exists globally in the data set. However,
in a multi-label data set which assigns colors to animals based on their attributes, a dependency between
the colors black and yellow might exist for insects but not for other animals such as birds. Therefore, the
dependency would only be local.
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attribute condition type possible values examples

weather nominal sunny, rainy, foggy sunny,¬foggy

temperature numeric [0,∞) temperature > 85.0, temperature ≤ 70

Table 1.: Example attributes and conditions

2.2. Inductive Rule Learning

In order to derive a model from the training data set, the implemented algorithm learns individual rules. Each
rule consist of a body and a head. The body of the rule consists of attribute-value tests, called conditions and
the head of the rule provides predictions for a single or multiple labels.

body → head

A rule covers an example if all conditions in the body are satisfied by the attribute values of the example.
In this work, only propositional, conjunctive rules, whose conditions are concatenated using logical AND
(∧) operations are considered. For nominal attributes, equality (=) and inequality ( ̸=) tests are used, while
relational tests (≤, and >) are used for numerical attributes. Equality and inequality checks are abbreviated
using the notation x or ¬x respectively in this work. Label predictions will be denoted as ŷ for the presence of
a label and ¬ŷ for the absence of a label respectively.

For example the rule

temperature > 10 ∧ relative_humidity ≤ 0.5 → ¬fog,¬snow, sunny

implies that if the temperature is greater than 10 and the relative_humidity is below or equal to 0.5, the
labels fog and snow are considered to be irrelevant, while the label sunny is considered to be relevant.
As rules can easily be comprehended by humans, rules and rule lists provide a way to describe multi-label
classification models interpretable by humans. Table 1 shows example attributes and conditions.

2.2.1. Rule Types

Multi-label rules can be divided into single-label head rules and multi-label head rules. While single-label
head rules only contain one label in the rule head, multi-label head rules predict multiple labels at once
(Rapp, 2016). Therefore, multi-label head rules can express dependencies between labels (see chapter
2.1.2). For example, the rule head ”→ ¬moonshine, sunshine” might indicate that the labels sunshine and
moonshine are globally or locally mutually exclusive. Rule heads which predict a value for all labels in the
data set will be called full rule heads in this work.

2.2.2. Separate-and-Conquer Rule Learning

An often used approach to learning rules is separate-and-conquer rule learning. In this approach, the algorithm
starts with an empty list of rules and adds rules successively to this list (Fürnkranz, 1999). First, the best
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rule according to an evaluation function is selected and added to the list. After that, all examples, which the
newly learned rule covers, are removed from the training data set. Algorithm 1 shows the basic structure of
separate-and-conquer algorithms.

Algorithm 1. Algorithm SeparateAndConquer for iteratively learning rule lists for binary classification (cf.
Fürnkranz (1999))
Input: Training data set T
Output: Learned rule list RuleList
1: procedure SeparateAndConquer
2: RuleList = ∅
3: while GetPositiveExamples(T) ̸= ∅ do ▷ Learn rules until no positive examples remain
4: BestRule = FindBestRule(T)
5: T = T \ GetCovered(T, BestRule) ▷ Remove covered examples from the training set
6: RuleList = RuleList ∪ BestRule
7: end while
8: return RuleList
9: end procedure

This algorithm guarantees completeness as it only terminates after all positive examples are covered. However,
in most cases this would lead to overfitting the data set (Loza Mencía and Janssen, 2016; Fürnkranz, 1999).
In order to avoid that, the parameter max_rules is used in the experiments in chapter 4 to stop the learner
from overfitting by learning more than max_rules rules.

2.2.3. Decision Lists

The rule lists returned by separate-and-conquer algorithms are called decision lists. These decision lists are
ordered sets containing the learned rules.

D = (r1, r2, . . . )

When an example is classified with a single-label decision list for multi-class classification, the first rule which
covers the example determines the predicted class.

In multi-label classification, the concept of decision lists has to be adapted in order to support predictions
for multiple labels in one evaluation. In contrast to conventional decision lists, the classification process is
not stopped when an example is covered by a rule, but continues until predictions for all labels exist. As
predictions of rules evaluated in the decision list cannot be revoked by other rules later, only predictions for
yet unpredicted labels are considered. In order to guarantee that all labels are predicted at the end of the
decision list, multi-label decision lists contain a default rule.

2.2.4. Default Rule

The default rule is the last rule of a decision list and makes a prediction for every yet unpredicted label. In
order to achieve this, the default rule has a full label head and predicts the presence or absence of all possible
labels. Consequently, rules other than the default rule only predict labels opposite to the default rule as
abstaining from a prediction for that label corresponds to predicting the label predicted by the default rule. In

13



# Rule
1 humidity > 82.5 ∧ temperature > 82.5 ∧ outlook = sunny → ¬play, dontplay

2 humidity > 88 ∧ temperature > 76 ∧ outlook = sunny → ¬play, dontplay

3 temperature ≤ 68.5 ∧ outlook ̸= rainy → playmaybe
… …
n ∅ → play = 1, dontplay = 0, playmaybe = 0

Table 2.: Example decision rule list with n rules

the experiments in chapter 4, the default rule is chosen to predict the majority class, i.e., the most frequent
value in the training data set, for each label. Hence, models with only one learned rule, the default rule,
provide a good baseline model for comparison with further extended models. Table 2 shows an example
decision list with the default rule as the last rule of the list.

2.3. Evaluation Metrics

In order to assess the quality of multi-label predictions, evaluation functions assigning a single score to a
prediction given by a multi-label classification model are required. Those evaluation metrics can be divided
into bipartition and ranking evaluation measures. However, this chapter only introduces bipartition evaluation
measures, as ranking evaluation measures are not considered in this work. First, this chapter will introduce the
classic notation for confusion matrices as well as an adapted notation proposed by Hefter (2020). After that,
multiple selected evaluation metrics are presented as well as adapted versions for the multi-label classification
setting. Chapter 2.3.4 describes different aggregation and averaging strategies used to combine the scores for
multiple predictions into a single score for a rule. Finally, two properties of multi-label evaluation functions
defined by Rapp (2016), which will be used to reduce the search complexity for finding multi-label head rules,
are presented.

2.3.1. Bipartition Evaluation

Bipartition evaluation metrics evaluate a model prediction based on the comparisons of the true label vector
to the label vector predicted by the model. These differences can be visualized in a confusion matrix C:

predicted not predicted

relevant TP FN
irrelevant FP TN
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The entries of the matrix correspond to the results of the comparison between the true label vector and the
predicted label vector:

• True positives (TP): The label is present in the true and the predicted label vector

• False negatives (FN): The label is present in the true label vector, but not in the predicted label vector

• False positives (FP): The label is not present in the true label vector, but is present in the predicted label
vector

• True negatives (TN): The label is neither present in the true nor in the predicted label vector

2.3.2. Multi-Label Evaluation

In order to evaluate multi-label rule predictions, metrics other than the conventional metrics for binary and
multi-class classifications are required (Loza Mencía, 2012). Hence, various of those conventional metrics
have been adapted to evaluate the quality of multi-label classifications. In this work, an adapted notation for
the evaluation of rule list model predictions is used as proposed by Hefter (2020). In contrast to the binary
setting, an additional dimension of entries is required for the confusion matrix in the multi-label rule setting:

• covered/uncovered (C/U): whether the the example is covered by the rule or not

• relevant/irrelevant (R/I): whether the label is true (1) or false (0) according to the true label vector

• predicted positive/predicted negative (P/N): whether the rule predicted the label to be true (1) or
false (0)

This results in a different confusion matrix for the multi-label setting:

y ŷ name

covered 0 0 Cin

covered 0 1 Cip

covered 1 0 Crn

covered 1 1 Crp

uncovered 0 0 Uin

uncovered 0 1 Uip

uncovered 1 0 Urn

uncovered 1 1 Urp

Other approaches for multi-label evaluation are possible as well. For example, all eight entries of the extended
confusion matrix may be mapped to the four entries of the classic notation for confusion matrices. However,
this leads to a loss of information. For example, if all correct predictions (y = ŷ) are classified as true positives,
evaluation metrics cannot distinguish between a correctly predicted positive label and a correctly predicted
negative label.
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Using the confusion matrices above, classic metrics and metrics adapted for the multi-label setting can be
defined.

2.3.3. Selected Metrics

The functions used to evaluate rules or predictions will be called metrics in this work. As these functions
provide an approximation for the quality of a rule, they are also often called heuristics (Janssen, 2012). In this
chapter, the metrics used or mentioned in this work are introduced. For each metric, the classic definition is
presented as well as a version adapted for the multi-label setting, if required in the remainder of this work.
The following shorthand notations are used in the definitions below:

Ccorrect = Crp + Cin

Cincorrect = Crn + Cip

C = Ccorrect + Cincorrect

Ucorrect = Urp + Uin

Uincorrect = Urn + Uip

U = Ccorrect + Uincorrect

P = tp+ fp

N = tn+ fn

(2.1)

• Precision:
Precision computes the fraction of relevant labels among all predicted labels and is defined as:

δprec =
tp

tp+ fp
(2.2)

The version adapted for the multi-label setting is defined as the fraction of correctly predicted labels
among all covered labels:

δadaptedprec =
Ccorrect

C
(2.3)

• Hamming accuracy:
The Hamming loss is a common metric for binary and multi-class classification and is defined as follows:

δhammloss =
fp+ fn

tp+ fp+ tn+ fn
(2.4)

In this work, a gain metric constructed from Hamming loss, the Hamming accuracy, is used. It is defined
as 1− δhammloss and corresponds to the percentage of correctly classified labels among all labels:

δhammacc =
tp+ tn

tp+ fp+ tn+ fn
(2.5)

• Recall:
Recall computes the fraction of predicted labels among all relevant labels and is defined as:

δrec =
tp

tp+ fn
(2.6)
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The adapted version computes the percentage of covered labels among all labels which would be correctly
classified by the rule to evaluate:

δadaptedrec =
Ccorrect

Ccorrect + Ucorrect
(2.7)

• F-Measure:
The F-measure computes the harmonic mean between precision and recall and is defined as:

δF =
(β2 + 1) · δprec · δrec
β2 · δprec + δrec

(2.8)

The positive, real parameter β controls how much more important recall is considered than precision.
This means if β > 1, recall is considered more important than precision, if β < 1, precision is considered
more important than recall and if β = 1, they are both considered equally important. The metric with
this special case (β = 1) is often referred to as ”F1-measure” and is defined as:

δF1 =
2 · δprec · δrec
δprec + δrec

(2.9)

• M-Estimate
The M-estimate can be interpreted as a trade-off between weighted relative accuracy and precision and
is defined as:

δm =
tp+m ∗ P

P+N

tp+ fp+m
, with m ≥ 0 (2.10)

The version adapted for the multi-label setting is defined as follows:

δadaptedm =
Ccorrect + (m ∗ Ccorrect+Ucorrect

(C+U) )

C +m
, with m ≥ 0 (2.11)

In the experiments in evaluation chapter 4, the evaluation metric M-estimate is used with different values for
the parameter m.

2.3.4. Aggregation and Averaging

In order to derive ametric for multi-label models from the evaluations of multi-label predictions using bipartition
functions, a single, comparable score needs to be calculated. One of the most commonly used approaches
to do this is the averaging of these binary classification metrics (Koyejo et al., 2015). Micro-averaging and
macro-averaging are two well-known averaging strategies.

Two aggregation operators are required in order to formally define the different averaging strategies. Let Ci,
i = 1, . . . , n be a sequence of confusion matrices and ⊕ the cell-wise addition of confusion matrices.

n∑︂
i=1

Ci := C1 ⊕ · · · ⊕ Cn

n
avg
i=1

Ci :=
1

n

n∑︂
i=1

Ci
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Now, the different averaging strategies can be defined. Since it is possible to iterate over two different
dimensions, examples and labels, before or after applying the evaluation function, six combinations of
aggregation exist. However, only four of these strategies are mathematically distinct (Loza Mencía, 2012).
The following definitions are based on Koyejo et al. (2015) and Loza Mencía (2012). Let i iterate over all
labels λ1, . . . , λn and j over all of examples X1, . . . , Xm of the data set.

• (Label and Example-based) Micro-Averaging: First, the atomic confusion matrices of all labels and
all examples are summed up to one single global confusion matrix. The evaluation function δ is then
applied to that confusion matrix in order to calculate the final single score.

δ ◦
∑︂
i

◦
∑︂
j

= δ ◦
∑︂
j

◦
∑︂
i

(2.12)

• Example-Based (Macro-)Averaging: First, the confusion matrix for each example is calculated by
adding up the atomic confusion matrix of each label of that example. Then, one score is calculated for
each example by applying the evaluation function δ to each of these confusion matrices. Finally, a final,
single score is calculated by computing the arithmetic mean of these scores.

avgj ◦ δ ◦
∑︂
i

(2.13)

• Label-Based (Macro-)Averaging: First, one confusion matrix for each label is calculated by adding up
the atomic confusion matrix of this label for each example. Then, one score is calculated for each label
by applying the evaluation function δ to each of these confusion matrices. Finally, a final, single score is
calculated by computing the arithmetic mean of these scores.

avgi ◦ δ ◦
∑︂
j

(2.14)

• (Label and Example-Based) Macro-Averaging: First, the evaluation function is applied to each atomic
confusion matrix of each label and example.Then, the calculated scores are averaged in order to obtain
one final score.

avgi ◦ avgj ◦ δ = avgj ◦ avgi ◦ h (2.15)

In this work, only label-based averaging is implemented as it fulfills the conditions required for pruning based
on decomposability (see chapter 2.4.2) independently of the metric used for evaluation. The following chapter
describes the conditions and advantages of different pruning strategies.

2.4. Pruning the Label Space

A very basic approach to finding the best head for a given rule body would be evaluating all possible heads
and selecting the head which lead to the best performing rule as the best head for the rule. However, an
exhaustive search of the label space L would be infeasible in most cases because its size grows exponentially
in relation to a possibly large number of labels (Loza Mencía, 2012). This chapter introduces two properties
of multi-label evaluation metrics as defined by Rapp (2016), which can be exploited in order to limit the
amount of evaluations while still guaranteeing the best solution. The following two chapters are based on
Rapp (2016) and Rapp, Loza Mencía, et al. (2018).
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2.4.1. Anti-Monotonicity

Anti-monotonous evaluation functions allow effective pruning of the required search space by guaranteeing
that certain combinations of labels cannot reach the maximum performance, if at least one of its subsets
does neither. This is true for all evaluation functions which guarantee that if a rule heads performance has
decreased by adding a label to the rule head, the maximum performance reached before cannot be reached
again by adding more labels to the rule head. Given a specific averaging and evaluation strategy, a multi-label
evaluation function δ is considered anti-monotonous, if the following conditions are met:

• If the performance of a multi-label head rules has decreased because a label has been added to the rule
head, the maximum performance hmax cannot be reached anymore by adding more labels to the rule
head:

Ŷ p ⊂ Ŷ s ∧ δ(B → Ŷ s, T ) < δ(B → Ŷ p, T ) ⇒ δ(B → Ŷ , T ) < hmax, ∀Ŷ a(Ŷ p ⊂ Ŷ a) (2.16)

• δ must not be monotonous according to Definition 2.17.

As monotonous evaluation functions are not considered in this work, this chapter will only contain the formal
definition of monotonicity required for the definitions of anti-monotonicity and decomposability. Given a
specific averaging and evaluation strategy, a multi-label evaluation function δ is considered monotonous if
adding a new label to an existing rule head never causes that rules performance to decrease:

δ(B → Ŷ a, T ) ≥ δ(B → Ŷ p, T ), ∀Ŷ a(Ŷ p ⊂ Ŷ a) (2.17)

2.4.2. Decomposability

Decomposability is a stronger property and implies anti-monotonicity. An evaluation function is considered
to be decomposable, if combining multiple single-label rules with different performances to a multi-label
head rule always yields a rule with worse performance than the best performing single-label head rule. Only
multi-label head rules which are composed of best performing single-label head rules can reach the best
performance as well. Therefore, only single-label heads reaching the maximum performance need to be
considered and combined after all possible single-label heads have been evaluated. Formally, a multi-label
evaluation function δ is considered decomposable, if:

• If a single-label rule B → ŷ corresponding to one predicted label attribute ŷ in the head of a multi-label
head rule B → Ŷ does not reach the best possible performance hmax, the multi-label rule itself does not
reach that maximum performance either, and vice versa:

∃ŷ ∈ Ŷ (δ(B → ŷ, T ) < hmax) ⇐⇒ δ(B → Ŷ , T ) < hmax

• If each single-label rule B → ŷ corresponding to the predicted label attributes ŷ in the head of a
multi-label head rule B → Ŷ reaches the best possible performance hmax, the multi-label rule itself
reaches exactly that maximum performance as well, and vice versa:

∀ŷ ∈ Ŷ (δ(B → ŷ, T ) = hmax, ) ⇐⇒ δ(B → Ŷ , T ) = hmax

• δ must not be monotonous according to Definition 2.17.
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Figure 1.: Prunable search for the best multi-label head given the labels λ1, λ2, λ3, and λ4 (cf. Rapp,
Loza Mencía, et al. (2018), Fig. 1).

Instead of performing a deep search through the entire label space, the property of decomposability of the
evaluation function can be used in order to fundamentally reduce the computational cost of determining the
best head for a rule. Instead of performing 2n evaluations for n labels, the number of evaluations can be reduced
to 2n. For each possible label, only two single-label rules need to be evaluated, predicting the presence or the
absence of that label. Figure 1 shows how the label search space can be pruned according to decomposability
or anti-monotonicity. All label combinations under the solid line can be pruned according to decomposability
and all label combinations below the dashed line can be pruned according to anti-monotonicity.

Because label-wise averaging, as described in chapter 2.3.4, computes the arithmetic mean of all performances,
it fulfills the conditions of decomposability independently of the metric used for evaluation. Therefore, the
M-estimate metric used in the conducted experiments is decomposable, when it is used in combination with
the label-wise averaging strategy.

2.4.3. Relaxed Pruning

When pruning the search through the label space according to decomposability, only single-label rules or
multi-label rules, whose heads only contain labels for which the corresponding single-label rules evaluate
to the same evaluation score, are learned. Because the evaluation scores of these single-label rules often
differ in practice, this results in learning mostly single-label rules missing the possibility of exploiting label
dependencies (Klein, 2018). The example in table 3 shows that label dependencies may be missed, even if the
evaluation scores of the corresponding single-label rules only differ slightly.

In order to learn multi-label head rules possibly revealing label dependencies, Klein (2018) proposed relaxing
the pruning constraints using Relaxation Lift Functions. Those relaxation lift functions allow the learner to
learn multi-label rules even if the evaluation score of the corresponding single-label rules slightly differ. To
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h Rule
0.615 temperature ≤ 66.5 ∧ outlook = rainy → dontplay = 1

0.612 temperature ≤ 66.5 ∧ outlook = rainy → play = 0

Table 3.: Example evaluation scores of single-label rules on the data set WEATHER with equal body

calculate the lifted heuristic value of a multi-label head rule, the unlifted heuristic value is multiplied by
the lift calculated by the relaxation lift function ρ. This lifted value is then used as the heuristic value for
rule evaluation. In order to reinforce learning multi-label head rules, the function used as the relaxation lift
function has to reward rules with more labels in the head more than rules with less labels in the head up to a
certain point. Klein (2018) proposed and evaluated multiple different relaxation lift functions and concluded
that the peak relaxation lift function reached the best performance in many cases. The implementation
presented in this this work uses the peak relaxation lift function as defined in Equation 2.18 (cf. Klein (2018),
Equation 5 and 6).

ρpeak(x) =

{︄
1 + ( x−1

m−1)
1/k ∗ (l − 1) if x ≤ m

1 + ( n−x
n−m)1/k ∗ (l − 1) if x > m

(2.18)

Figure 2 shows a parameterized example of the peak relaxation lift function with the parameters m = 5,
k = 1.2 and l = 1.4 for a data set with n = 10 different labels.

1 2 3 4 5 6 7 8 9 10

number of labels

0.0

0.5

1.0

1.5

lif
t

Figure 2.: The peak relaxation lift function with parameters peak_label m = 5, curvature k = 1.2 and max_lift l
= 1.5 for a data set with n = 10 different labels
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3. Learning Multi-Label Rules

This chapter introduces the algorithm implemented in this work. It is based on the BOOMER framework
(Rapp, Mencía, et al., 2020) and thus, it shares its underlying structure. The individual parts of the algorithm
are described in the following chapters. Due to the modular structure of the framework, the specific parts of
the algorithm can basically be interchanged with different implementations, resulting in other rule learning
algorithms. Figure 3 shows a sequence diagram of the flow of the implemented algorithm.

for each rule

:RuleInduction :HeadRefinement

for each refinement

for each attribute

for each example

:Loss:SeparateAndConquer

InduceDefaultRule()

InduceRule()

initialize default matrix

default rule

ResetSearch()

UpdateSearch()

FindHead()

best head

EvaluateLabelPredictions()

scores

ApplyPredictions()
best rule

InduceRules()

rule list

Figure 3.: Sequence diagram of the flow of the implemented algorithm
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3.1. Rule Induction

Algorithm 2 InduceRules is the main routine of the algorithm and is responsible for combining induced rules
to the final rule list. Even though the default rule induced by algorithm 3 InduceDefaultRule is learned first,
it is appended as the last element of the decision list. The reason for this is that the default rule is required for
the condition refinement and must be initialized first. The algorithm continues learning rules until a stopping
criterion defined in algorithm 5 ShouldContinue is satisfied.

Algorithm 2. Algorithm InduceRules for inducing multi-label rule lists
Input: Training data set T
Output: Learned rule list RuleList
1: procedure InduceRules
2: RuleList = ∅
3: rdefault = InduceDefaultRule(T)
4: while ShouldContinue(RuleList) do ▷ Learn rules until stopping criterion is satisfied
5: r = InduceRule(T)
6: RuleList = RuleList ∪ r
7: end while
8: RuleList = RuleList ∪ rdefault
9: return RuleList

10: end procedure

Algorithm 3 InduceDefaultRule induces the default rule based on the majority labels as a prediction and
initializes the matrix Cdefault. This matrix contains the label-wise confusion matrices which would result from
predicting all examples according to the default rule. Matrix Cdefault will be used in algorithm 6 RefineRule
and explained in the corresponding chapter. The operator ++ is the increment operator, which increments
the value of the preceding operand by 1.
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Algorithm 3. Algorithm InduceDefaultRule for initializing the matrix Cdefault and inducing the default
rule
Input: Training data set T
Output: Induces default rule rdefault
1: procedure InduceDefaultRule
2: Cdefault = (0)|L|×4 ▷ Cdefault is initialized as an matrix of the shape |L| × 4
3: Let ŷi, . . . , ŷ|L| be the majority labels as a prediction
4: for (X,Y ) ∈ T do
5: for λi ∈ L do
6: if ŷi = 1 then
7: if yi = 1 then
8: CTP

default++
9: else

10: CFP
default++

11: end if
12: else
13: if yi = 1 then
14: CFN

default++
15: else
16: CTN

default++
17: end if
18: end if
19: end for
20: end for
21: rdefault = ∅ → ŷi, . . . , ŷ|L|
22: return rdefault
23: end procedure

Algorithm 4 InduceRule finds the best rule for the currently remaining training set. For this, a greedy
top-down search is used, starting with the most generic rule with an empty body, which is then successively
specialized. In order to do this, conditions are appended to the body, making the rule more strict until it is
not possible to improve it anymore. After each iteration, the remaining training data set is reduced to all
examples which are covered by the induced rule. This is done using the subroutine GetCoveredExamples,
which returns the subset of all examples which are covered by the induced rule r. This guarantees, that only
examples which satisfy the previous conditions are considered in the condition search. The algorithm stops as
soon as the evaluation score of the rule returned by RefineRule is not better than the score of the best rule
found yet anymore.
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Algorithm 4. Algorithm InduceRule for finding the best rule on the remaining training data set
Input: Training data set T , evaluation function δ
Output: The best global rule found rbest
1: procedure InduceRule
2: rbest = ∅
3: rbest.h = −∞
4: improved = true
5: while improved do ▷ While improvement is possible
6: r=RefineRule(T, rbest, δ)
7: if r.h > rbest.h then
8: rbest = r
9: else

10: improved = false
11: end if
12: T = GetCoveredExamples(r, T ) ▷ Only examples which satisfy the previous conditions are

considered for the next condition refinement
13: end while
14: return rbest
15: end procedure

Algorithm 5 ShouldContinue determines whether or not the algorithm should stop learning rules or continue
after a rule was learned. Even though many stopping criteria could be used here, only a simple stopping
criterion is implemented in this work, leaving the testing of other stopping criteria for future work. The
default stopping criterion for separate-and-conquer algorithms is that all positive examples in the training
data set are covered (Fürnkranz, 1999). However, in this algorithm, an alternative stopping criterion adapted
to the multi-label setting is implemented. The algorithm stops as soon as either the number of learned rules
is greater than or equal to the parameter max_rules or all labels have been covered by a rule, including
the default rule. The variable SumUncoveredLabels corresponds to the number of labels which are neither
predicted correctly by the default rule nor predicted by any rule covering the corresponding example.

Algorithm 5. Algorithm ShouldContinue for determining whether or not the algorithm should stop learning
rules or continue
Input: Number of uncovered labels SumUncoveredLabels, rule list RuleList, maximum number of rules

max_rules
Output: Whether or not the algorithm should continue learning rules
1: procedure ShouldContinue
2: if SumUncoveredLabels = 0 then
3: return false
4: else if |RuleList| ≥ max_rules then
5: return false
6: else
7: return true
8: end if
9: end procedure
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3.2. Refining Rule Conditions

In order to choose the best refinement for a rule body, all possible refinements have to be evaluated. The
algorithm 6 RefineRule, called by algorithm 4 InduceRule, tries to find the best possible condition by
exhaustively testing all possible attribute conditions. This is done efficiently by iterating through a sorted
AttributeV alues array of tuples (value, index) corresponding to the attribute values of each example in the
training data set and its index (cf. Mehta et al. (1996); Shafer et al. (2000)). The ArgSort subroutine sorts
the array of attribute values and returns an array of tuples (index, value) containing the sorted attribute
values and their corresponding indices in the training data set.

Algorithm 6. Algorithm RefineRule for finding and appending the best condition to a rule body
Input: Training data set T , evaluation function δ, rule r
Output: The refined rule rbest
1: procedure RefineRule
2: rbest = r
3: ResetSearch()
4: for each attribute Ai do
5: Let AttributeV alues be the array of all values assigned to attribute Ai in training data set T
6: AttributeV aluessorted = ArgSort(AttributeV alues)
7: for (value, index) ∈ AttributeV aluessorted do
8: UpdateSearch(T [index])
9: if Ai is nominal then

10: rrefined.body = r.body ∪ λi = value
11: else
12: rrefined.body = r.body ∪ λi ≤ value
13: end if
14: r = FindHead(r, ρ, false) ▷ Find the best head for covered examples
15: if r.h > rbest.h then
16: rbest = rrefined
17: end if
18: if Ai is nominal then
19: rrefined.body = r.body ∪ λi ̸= value
20: else
21: rrefined.body = r.body ∪ λi > value
22: end if
23: r = FindHead(r, ρ, true) ▷ Find the best head for uncovered examples
24: if r.h > rbest.h then
25: rbest = rrefined
26: end if
27: if Ai is nominal then
28: ResetSearch() ▷ Reset search as examples before are not covered by the next condition
29: end if
30: end for
31: end for
32: return rbest
33: end procedure
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For every one of these tuples, two conditions are then evaluated in each iteration. The operators for these
conditions are the relational tests (≤ and >) for numerical attributes and the equality tests (= and ̸=) for
nominal attributes respectively. The procedure UpdateSearch updates the state of the condition search,
keeping track of confusion matrices required to evaluate label predictions of rules with the current conditions.
For each condition, the best head is determined by algorithm 9 FindHead. The rule with the highest evaluation
score h is then returned as the refined rule.
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Figure 4.: Numeric Condition Finding

For nominal attributes, the algorithm needs to behave differently. Instead of relational tests, an equality and
an inequality test has to be appended as a possible condition. Furthermore, the state of the condition search
is reset after every example, as previous examples shall not count as covered for the upcoming refinement.
The reason for this is that the equality test = is not satisfied for previous examples with other nominal values.
Thus, the algorithm ResetSearch needs to be called after each iteration to reset the state of the condition
search.

27



rain

rain

rain

sun

sun

sun

fog

fog

fog

AttributeV aluessorted

threshold 1

threshold 2

Condition 1:
weather = sun

Condition 2:
weather ̸= sun

UpdateSearch()

UpdateSearch()

UpdateSearch()

UpdateSearch()

UpdateSearch()

UpdateSearch()

UpdateSearch()

UpdateSearch()

UpdateSearch()

FindHead(), ResetSearch()

FindHead(), ResetSearch()

Figure 5.: Nominal Condition Finding

3.2.1. Aggregating Confusion Matrices

Algorithm 7 UpdateSearch is called by algorithm 6 RefineRule and is responsible for aggregating the
confusion matrix Ccovered by comparing the labels which would be predicted by a rule with the true label
vectors. It is called once for every example which will be covered by upcoming conditions. The matrix Ccovered

corresponds to the confusion matrix for all labels of all examples which assign a value to the current attribute
which is lower or equal to the current threshold. It is required to compute the multi-label confusion matrices
for all labels under the current condition derived from the current attribute value as a threshold.

The only labels which are predicted by a rule are the minority labels, i.e., the least frequent value in the
training data set. This is due to the fact that predicting the opposite of the minority labels would be equivalent
to abstaining from a prediction or predicting the default rule. This corresponds to rule-dependent evaluation
(Rapp, 2016). Another possible approach to handling unpredicted labels would be treating unpredicted labels
as predicted to be irrelevant during the evaluation. This rule-independent evaluation strategy however has
lead to worse performance, increased runtime and longer learned decision lists in previous experiments (cf.
Rapp (2016)) and therefore it is not used in this work.

Note that while the matrices Ccovered and Cdefault contain four elements according to the classic notation of
confusion matrices, the evaluation function δ is the adapted version of a multi-label evaluation metric which
requires a confusion matrix with eight different entries. This is due to the fact that Ccovered and Cdefault do
not respect the dimension of coverage (see chapter 2.3.2) as they already imply whether a label is covered or
not. The operator ++ is the increment operator, which increments the value of the preceding operand by one.
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Algorithm 7. Algorithm UpdateSearch for aggregating the confusion matrix Ccovered

Input: Training data instance (X,Y ), matrix Ccovered

1: procedure UpdateSearch
2: Let ŷi . . . ŷ|L| be the minority labels as a prediction
3: for λi ∈ L do
4: if IsUncovered(yi) then
5: if ŷi = 1 then
6: if yi = 1 then
7: CTP

covered++
8: else
9: CFP

covered++
10: end if
11: else
12: if yi = 1 then
13: CFN

covered++
14: else
15: CTN

covered++
16: end if
17: end if
18: end if
19: end for
20: end procedure

Algorithm IsUncovered returns whether or not the label value yi is already covered either by the default
rule or an other rule induced before. This is implemented using a matrix mask, which is updated every time
a new rule is induced. However, as the implementation and usage of this matrix is not important for the
implementation of the algorithm proposed in this work, it is not shown explicitly.

Algorithm 8 ResetSearch resets the aggregated confusion matrix Ccovered by assigning the value 0 to each
entry of the confusion matrix. This required for nominal attributes as well as at the beginning of each new
condition search.

Algorithm 8. Algorithm ResetSearch for resetting the state of the condition search
Input: Matrix Ccovered

1: procedure ResetSearch
2: CTP

covered = 0
3: CFP

covered = 0
4: CFN

covered = 0
5: CTN

covered = 0
6: end procedure

3.2.2. Sparse Condition Finding

Sparse matrices are matrices in which most elements are zero. In machine learning, sparse representations
of matrices often do not explicitly contain zero values. As sparse matrix representations are common in
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the area of machine learning, this chapter briefly introduces how the sparsity of matrices were exploited in
the experiments on the implemented algorithm. Sparse condition finding is not part of this work, as it is
implemented in the BOOMER framework. Its idea is based on ”sparsity-aware split finding” (see Chen and
Guestrin (2016)).

Due to the sorting of attribute values, sparse matrices can be handled efficiently with a few changes to the
original algorithm. Instead of only iterating through the array of attribute values once, the algorithm processes
the attribute values once from the top (negative values) and once from the button up (positive values) to the
value 0 in the sorted array. After that, if zeroes exist in the sparse matrix, the best head is searched again with
respect to the zeroes, which are not explicitly featured in the sparse matrix.

Figure 6.: Sparse Condition Finding
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Note that the state of the condition search is reset after all negative attribute values have been processed. This
is necessary, so that the confusion matrix for uncovered examples (Cdefault − Ccovered) can still be calculated
correctly when the positive attribute values are processed.

3.3. Head Refinement

Algorithm 9 FindHead is called by algorithm 6 RefineRule and finds the best head for a given rule according
to a decomposable evaluation function δ. In the experiments, two different approaches for head refinement
were used. Single-label head refinement corresponds to learning only single-label head rules, while multi-label
head refinement is also able to induce multi-label head rules. In order to increase the efficiency of the
implemented algorithm, the maximum number of head refinements per rule was restricted to one in the
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conducted experiments. This means that rules keep the first head assigned to them after the first condition
refinement. Testing other restrictions or unlimited head refinements is left for future work. The following two
chapters describe both approaches, which can be used interchangeably.

Algorithm 9. Algorithm FindHead for finding and setting the best head for a rule
Input: Rule r, relaxation lift function ρ with maximum value ρmax, whether or not uncovered examples shall

be evaluated evaluateUncovered
Output: The rule with the best head rbest
1: procedure FindMultiLabelHead
2: if Multi-label head refinement shall be used: then
3: return FindMultiLabelHead(r, ρ, evaluateUncovered)
4: else
5: return FindSingleLabelHead(r, evaluateUncovered)
6: end if
7: end procedure

3.3.1. Single-Label Head Refinement

Single-label head refinement is used as a baseline approach for comparison with themulti-label head refinement
approach. Algorithm 10 FindSingleLabelHead simply finds the label for which the evaluation score according
to evaluation function δ is the highest and returns the rule predicting this label.

Algorithm 10. Algorithm FindSingleLabelHead for finding and setting the best single-label head for a rule
Input: Rule r, whether or not uncovered examples shall be evaluated evaluateUncovered
Output: The rule with the best head rbest
1: procedure FindSingleLabelHead
2: rbest = r
3: scores = EvaluateLabelPredicitons(evaluateUncovered)
4: for all hi ∈ scores do
5: r = r.body → λi

6: r.h = hi
7: if r.h > rbest.h then
8: rbest = r
9: end if

10: end for
11: return rbest
12: end procedure

3.3.2. Multi-Label Head Refinement

As rules with multiple labels in the head can be learned with multi-label head refinement, the most promising
label combinations need to be evaluated. First, the scores obtained by algorithm 12 EvaluateLabelPredic-
tions are sorted in descending order. The subroutine Sort returns a list of tuples (λi, hi) which corresponds
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to the sorted labels and their evaluation scores determined in Algorithm 12 EvaluateLabelPredictions
respectively.

Then, instead of performing an exhaustive search through all possible label-combinations, only the labels with
the highest evaluation scores are successively considered until the current best evaluation score cannot be
reached anymore by adding more labels according to relaxed pruning based on decomposability. In order to
obtain a single score for a rule, based on the evaluation scores of the labels in the rule head, the label-wise
averaged total score is multiplied with the lift provided by the relaxation lift function ρ. The head of the rule
which reached the highest lifted score is then returned as the best head.

Algorithm 11. Algorithm FindMultiLabelHead for finding and setting the best multi-label head for a rule
Input: Rule r, relaxation lift function ρ with maximum value ρmax, whether or not uncovered examples shall

be evaluated evaluateUncovered
Output: The rule with the best head rbest
1: procedure FindMultiLabelHead
2: rbest = r
3: htotal = 0
4: scores = EvaluateLabelPredicitons(evaluateUncovered)
5: scoressorted = Sort(scores)
6: for all (λi, hi) ∈ scoressorted do
7: r = r.body → r.head ∪ λi

8: htotal = htotal + hi
9: h = htotal

|r.head|
10: r.h = h ∗ ρ(|r.head|) ▷ Apply relaxation lift
11: if r.h ≥ rbest.h then
12: rbest = r
13: else if ρmax ∗ h < rbest.h then
14: break ▷ Relaxed pruning according to decomposability
15: end if
16: end for
17: return rbest
18: end procedure

3.4. Measuring Performance

Algorithm 12 EvaluateLabelPredictions calculates the evaluation scores for rules predicting the minority
labels for either all covered examples or all uncovered examples. In order to obtain the multi-label confusion
matrix for all labels under the current condition, Ccovered has to be concatenated with the result of the element-
wise subtraction Cdefault − Ccovered. The multi-label confusion matrix for the inverted condition can also be
obtained by swapping the confusion matrix for all covered examples Ccovered with the confusion matrix for all
uncovered examples Cdefault − Ccovered. Note that the union operator ∪ denotes the concatenation of two
classic confusion matrices with four entries to one multi-label confusion matrix with eight entries in algorithm
12. The first operand contains all elements which will be considered covered in the resulting multi-label
confusion matrix, while the second operand contains all elements which will be considered uncovered.
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Algorithm 12. Algorithm EvaluateLabelPredictions for computing the evaluation scores for all labels
based on matrices Ccovered and Cdefault

Input: Evaluation function δ, whether or not uncovered examples shall be evaluated
Output: Computed evaluation scores for all labels scores
1: procedure EvaluateLabelPredictions
2: scores = (0)|L| ▷ Initialize scores as an array of length |L|
3: for λi ∈ L do
4: if confusion matrix for uncovered examples shall be evaluated then
5: C = (Cdefault − Ccovered) ∪ Ccovered

6: else
7: C = Ccovered ∪ (Cdefault − Ccovered)
8: end if
9: scores[i] = δ(C)

10: end for
11: return scores
12: end procedure
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4. Evaluation of Results

In this chapter, the best configurations of selected hyperparameters for different data sets are determined in
order to measure their influence on the performance of the multi-label rule learner. First, the experiments per-
formed are described, including definitions of the used evaluation method, tested data sets, tuned parameters
and specific implementation settings including the selected heuristic and relaxation lift function. After that,
the results of the experiments as well as an evaluation of the different models generated are presented.

4.1. Experimental Setup

This chapter describes the experimental setup which was used to find the optimal hyperparameter configura-
tions and on which data sets they were tested. It also includes which hyperparameters were tuned and why
they were chosen over other parameters.

4.1.1. Bootstrap Bias Corrected Cross Validation

Traditionally, nested cross validation is often used in order to find the optimal hyper-parameter configuration
(cf. Varma and Simon (2006)). However, according to Tsamardinos et al. (2017), nested cross validation can
be replaced by bootstrapping the selection of the optimal configuration on out-of-sample predictions of each
configuration for tuning hyper-parameters, yielding better performance and a smaller variance and bias. In
this work, Bootstrap Bias Corrected Cross Validation (BBC-CV) is used with 50 bootstrapping iterations and
the target evaluation measure Hamming loss. Chapter 4 contains a definition of Hamming loss and other
measures used to evaluate the performance of the tested configurations.

4.1.2. Data Sets

The implemented rule learner was tested with five different data sets taken from the Mulan project (Tsoumakas
et al., 2011). Table 4 lists relevant attributes of the used data sets. These are namely the name of the data
set, the domain of the input examples, the number of examples, the number of nominal attributes, the
number of numeric attributes, the total number of unique labels, the average number of labels per example
called cardinality, the average percentage of relevant labels called density and the number of distinct label
combinations in the data set.

34



Name Domain Instances Nominal Numeric Labels Cardinality Density Distinct
emotions Music 593 0 72 6 1.869 0.311 27
scene Image 2407 0 294 6 1.074 0.179 15
birds Audio 645 2 258 19 1.014 0.053 133
yeast Biology 2417 0 103 14 4.237 0.303 198
medical Text 978 1449 0 45 1.245 0.028 94

Table 4.: Relevant characteristics of the data sets used in the experiments

4.1.3. Tuned Parameters

Table 5 shows which parameters were tuned and which values of these parameters were tested in order to
find the optimal configuration for the chosen data sets.

• The parameter head refinement describes the head refinement strategy which was used to learn rule
heads, with the value single-label corresponding to learning only single-label head rules and the value
multi-label referring to learning multi-label head rules as well.

• The parameter max_rules controls the maximum number of rules learned by the algorithm. If no
other stopping criterion is specified, the algorithm stops as soon as all examples are covered by default.
However, this would lead to overfitting as mentioned in chapter 2.2.2. As stopping criteria are left for
future work, they are not considered in the proposed algorithm. Instead, the max_rules parameter is
handled as a tuned parameter. Models with less then the maximal value for max_rules are obtained by
cutting off rules from the end of the decision list of the model until only the default rule is left, which
corresponds to the max_rules parameter 1.

• For the evaluation function M-estimate, the only parameter m is tested with the values 0 and all powers
of 2 between 1 and 512 inclusively.

• When Relaxed Pruning is tested, only the parameter max_lift is tuned, while the parameters curvature
and peak_label stay fixed at 1 and the rounded up cardinality of the data set respectively.

Parameter Values
Base Learner

head refinement single-label, multi-label

max_rules [1,∞)

M-Estimate
m 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512

Relaxed Pruning (only with multi-label head refinement)

max_lift 1, 1.02, 1.04, 1.08, 1.16, 1.32

curvature 1

peak_label ⌈Cardinality⌉

Table 5.: Tuned parameters and tested values. The peak_label parameter is chosen as the cardinality,
rounded up to the next positive integer
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As shown in chapter 2.3.3, many heuristics can possibly be used in order to evaluate the quality of a multi-
label head rule. However, according to Rapp, Loza Mencía, et al. (2019), a heuristic which is able to trade
off between consistency and coverage, like the F-measure or M-estimate heuristic, may greatly improve
performance, if they are fine-tuned depending on the used data sets. As listed in table 5, only the M-estimate
heuristic with the tuned parameter m was used in this implementation.

4.2. Predictive Quality

In this chapter, the experimental results in terms of predictive quality are presented. First, the metrics used
to measure the performance of models will be described. After that, an analysis of the obtained results is
conducted. All data evaluated can be found in appendix A.

• Hamming Accuracy:
The Hamming accuracy metric corresponds to the percentage of correctly classified labels and is defined
as in equation 2.4.

• Example-based Precision:
The precision metric corresponds to the fraction of correctly classified labels among all predicted labels
and is defined as in Equation 2.2. For this metric, the example-wise averaging strategy is used as defined
in equation 2.13.

• Example-based Recall:
The recall metric corresponds to the fraction of predicted labels among all relevant labels and is defined
as in equation 2.6. For this metric, the example-wise averaging strategy is used as defined in equation
2.13.

• Example-based F1-Measure:
The F1-measure computes the harmonic mean between precision and recall and is defined as in equation
2.9. For this metric, the example-wise averaging strategy is used as defined in equation 2.13.

• Micro-averaged Precision:
The precision metric corresponds to the fraction of correctly classified labels among all predicted labels
and is defined as in Equation 2.2. For this metric, the micro-averaging was used as defined in equation
2.12.

• Micro-averaged Recall:
The recall metric corresponds to the fraction of predicted labels among all relevant labels and is defined
as in equation 2.6. For this metric, the micro-averaging was used as defined in equation 2.12.

• Micro-averaged F1-Measure:
The F1-measure computes the harmonic mean between precision and recall and is defined as in equation
2.9. For this metric, the micro-averaging was used as defined in equation 2.12.

Table 6 shows the performance of the best configurations according to the hamming accuracy metric for all
data sets using either single-label head refinement or multi-label head refinement. In almost all cases, the
approach using multi-label head refinement outperforms the approach using single-label head refinement.
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data set head ref. Ha.Acc. Ex.Prec. Ex.Rec. Ex.F1. Mi.Prec. Mi.Rec. Mi.F1

birds single-label 94.85% 99.14% 48.85% 49.38% 81.82% 3.83% 7.32%

multi-label 94.78% 98.28% 49.17% 49.50% 66.67% 3.40% 6.48%

emotions single-label 70.85% 97.91% 5.12% 6.14% 77.78% 5.37% 10.05%

multi-label 71.71% 95.58% 9.38% 11.24% 76.00% 9.72% 17.23%

yeast single-label 77.09% 74.91% 34.92% 46.74% 74.97% 36.84% 49.40%

multi-label 77.45% 75.18% 35.68% 47.27% 76.01% 37.61% 50.32%

medical single-label 97.38% 99.27% 7.39% 7.54% 89.86% 6.77% 12.59%

multi-label 97.54% 99.59% 12.68% 13.45% 97.37% 12.12% 21.55%

scene single-label 82.80% 99.89% 4.27% 4.29% 97.44% 4.03% 7.73%

multi-label 83.94% 98.75% 11.66% 11.83% 90.08% 11.55% 20.47%

Table 6.: Best performances all models learned.

4.2.1. Single-Label Head Refinement

The heat maps in Figure 7a, 7b, 7c, 7d and 7e depict the average ranks of all tested configurations using
the single-label head refinement. The m value parameter of the M-estimate heuristic on the y-axis is plotted
against the max_rules parameter on the x-axis. For all data sets, the number of rules learned until all examples
are covered decreases when a higher value for m is chosen. The only exception is an increase of learned rules
when the m value is increased form 256 to 512 on the data set birds. The performance of the learned model
also tends to increase for many data sets with a rising m value up to a certain point dependent on the data set.
The value 0 seems to be a bad choice for the parameter m in all cases. This is most likely due to the fact that
the M-estimate heuristic with the parameter value 0 for m is equivalent to the precision metric and therefore
ignores the coverage of rules learned. This results in a bad performance and a large number of rules which
have to be learned until all examples are covered. Especially for data sets with many instances and labels,
relatively many rules have to be learned until all examples are covered. While removing rules from the end of
the decision list in order to prevent overfitting as described in chapter 4.1.3 is effective for the data sets scene,
birds, emotions and yeast, the optimal number of rules learned is almost equal to the maximum number of
rules learned for the data set medical in most cases.

4.2.2. Multi-Label Head Refinement

The heat maps in Figure 8a, 8b, 8c, 8d and 8e depict the average ranks of all tested configurations using the
multi-label head refinement. The max_lift value for relaxed pruning on the y-axis is plotted against the m
value parameter for the M-estimate heuristic on the x-axis. The performance-wise advantage of a high m
value is also reflected in the results for the multi-label head refinement experiments. For most data sets, a
global maximum for the m value is visible, even though some local maxima are visible for the data sets birds
and arguably for other data sets. Given an m value of 64 or 128, a high value for the parameter max_lift
seems to be beneficial for the data set yeast, which has a high cardinality and consequently a high peak_label
value. The parameters m and max_lift do not seem to be independent of each other for all other data sets
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Figure 7.: Average ranks of all tested configurations using the single-label head refinement
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as well. This may be due to the fact that they both influence the coverage of learned rules in different ways.
Note that some results may be influenced by the fact that for multi-label head refinement, not all possible
values for the parameter max_rules could be tested due to resource limitations. Only every value divisible by
5, up to the maximum number of rules, was tested for the parameter max_rules.

4.3. Model Characteristics

In order to compare the quality of the different learned models, not only the predictive performance but
also selected other characteristics are statistically evaluated. The following model characteristics have been
obtained in the conducted experiments:

• #rules describes the number of rules learned until all examples have been covered.

• Avg.Con. corresponds to the average number of conditions per learned rule.

• opt. #rules corresponds the number of rules for which the model reached the highest performance
according to the Hamming accuracy metric.

• runtime describes the time required until the model was learned in the format HH:MM:SS. The
experiments were conducted on the computation cluster of the Knowledge Engineering Group at TU
Darmstadt.

The following characteristics are only valid if the multi-label head refinement was used:

• %MLHR describes the percentage of multi-label head rules learned among all rules of the decision list,
excluding the default rule.

• Avg.MLH corresponds to the average number of labels in a multi-label head rule among all multi-label
head rules.

Tables 7, 8, 9, 10 and 11 show the model characteristics of all models learned with the multi-label head
refinement, while tables 12, 13, 14 and 15, 16 show the model characteristics of all models learned with the
single-label head refinement. The parameters head ref., m and data set describe which parameters were
used when the models were learned:

• The parameter head ref. describes the head refinement strategy which was used to learn rule heads,
with the value single-label corresponding to learning only single-label head rules and the valuemulti-label
referring to learning multi-label head rules as well.

• The parameter m corresponds to the m value used in the M-estimate heuristic

• The data set is the data set on which the model was learned.

• The parameter l is only valid for models using the multi-label head refinement and is the short notation
for the maximum lift used as a parameter for the peak relaxation lift function.
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Figure 8.: Average ranks of all tested configurations using the multi-label head refinement
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5. Conclusion

This final chapter summarizes the most important results of this work and gives an overview over possible
future improvements of the implemented algorithm.

5.1. Summary

In this work, an algorithm based on the separate-and-conquer algorithm proposed by Rapp (2016), combining
multiple approaches suggested in recent studies (cf. Klein (2018); Hefter (2020); Loza Mencía (2012)),
was implemented and empirically tested. The algorithm was implemented in the BOOMER framework
(Rapp, Mencía, et al., 2020) and contains algorithmic improvements over a naive implementation of the base
algorithm. The test results of different approaches and hyperparameter settings show the performance of the
suggested algorithm under selected configurations. As the examinations showed, the learned number of rules
can be reduced by increasing the value of the parameter m of the M-estimate heuristic, without trading off
much performance. In fact, a m value between 64 and 512 lead to the best possible results in many cases,
while producing relatively short rule lists. The evaluation shows that the efficiency and predictive performance
of the implemented algorithm is comparable with other multi-label classification algorithms.

5.2. Future Work

The M-estimate metric was the only metric used in the experiments conducted in this work. Other metrics, for
example the F-measure metric, can be used with the implemented algorithm as well as long as the label-wise
averaging strategy is used or they otherwise fulfill the conditions required for decomposability. Furthermore,
the implemented algorithm could be improved by using a pruning mechanism like IREP (see Johannes and
Widmer (1996)).

As only trivial stopping criteria are used in the implemented algorithm, a single or multiple stopping criteria,
for example based on the coverage of the training data set, are required.

Another improvable aspect of the implemented algorithm is the parameterized maximum number of head
refinements mentioned in chapter 3.3. As its value was 1 during all experiments conducted in this work, other
values, as well as other approaches to restricting the number of head refinements, may improve the quality of
learned models.

Label conditions are conditions which depend on labels predicted by previous rules in the decision list. Rules
may partially or fully depend on label conditions and therefore, they can exploit or expose label dependencies.
In this work, label conditions were not considered, as label dependencies can also be expressed with multi-label
rule heads. However, the induction of label conditions may yield improvements to the proposed algorithm.
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A. Performance Evaluations

Table 7.: Performance of multi-label models learned from the data set birds
parameters performance measures

data set head ref. m l Ha.Acc. Ex.Prec. Ex.Rec. Ex.F1. Mi.Prec. Mi.Rec. Mi.F1
birds multi-label 0 - 92.35% 69.74% 61.88% 55.12% 32.43% 35.82% 34.04%
birds multi-label 0 1.02 92.76% 76.09% 59.79% 52.53% 33.33% 31.34% 32.31%
birds multi-label 0 1.04 92.68% 74.53% 59.79% 50.97% 32.81% 31.34% 32.06%
birds multi-label 0 1.08 92.60% 72.97% 59.79% 50.97% 32.31% 31.34% 31.82%
birds multi-label 0 1.16 92.60% 72.97% 59.79% 50.97% 32.31% 31.34% 31.82%
birds multi-label 0 1.32 92.85% 72.79% 60.57% 51.64% 34.85% 34.33% 34.59%
birds multi-label 1 - 93.50% 73.75% 64.22% 57.77% 41.18% 41.79% 41.48%
birds multi-label 1 1.02 93.17% 73.10% 65.78% 58.76% 39.19% 43.28% 41.13%
birds multi-label 1 1.04 93.09% 71.54% 65.78% 57.20% 38.67% 43.28% 40.85%
birds multi-label 1 1.08 93.09% 71.41% 65.26% 56.94% 38.36% 41.79% 40.00%
birds multi-label 1 1.16 93.17% 69.68% 66.33% 57.28% 39.19% 43.28% 41.13%
birds multi-label 1 1.32 92.68% 67.60% 64.17% 55.79% 35.90% 41.79% 38.62%
birds multi-label 2 - 93.91% 72.58% 67.08% 57.59% 44.93% 46.27% 45.59%
birds multi-label 2 1.02 93.42% 69.27% 67.08% 56.93% 41.33% 46.27% 43.66%
birds multi-label 2 1.04 93.34% 67.71% 67.08% 55.37% 40.79% 46.27% 43.36%
birds multi-label 2 1.08 93.42% 70.62% 67.08% 56.80% 41.33% 46.27% 43.66%
birds multi-label 2 1.16 93.50% 69.55% 67.73% 57.32% 42.11% 47.76% 44.76%
birds multi-label 2 1.32 93.09% 64.61% 62.01% 54.20% 37.31% 37.31% 37.31%
birds multi-label 4 - 94.16% 71.93% 66.56% 57.30% 46.97% 46.27% 46.62%
birds multi-label 4 1.02 94.16% 71.56% 66.56% 57.76% 46.97% 46.27% 46.62%
birds multi-label 4 1.04 93.67% 70.39% 66.56% 55.68% 43.06% 46.27% 44.60%
birds multi-label 4 1.08 93.50% 67.27% 66.56% 55.68% 41.89% 46.27% 43.97%
birds multi-label 4 1.16 93.67% 68.83% 67.21% 54.97% 43.42% 49.25% 46.15%
birds multi-label 4 1.32 92.43% 69.45% 66.20% 56.27% 34.57% 41.79% 37.84%
birds multi-label 8 - 94.33% 74.90% 65.91% 57.70% 48.48% 47.76% 48.12%
birds multi-label 8 1.02 93.91% 72.45% 65.39% 57.31% 44.93% 46.27% 45.59%
birds multi-label 8 1.04 93.42% 66.56% 65.39% 55.22% 41.33% 46.27% 43.66%
birds multi-label 8 1.08 93.50% 68.91% 69.04% 57.28% 42.50% 50.75% 46.26%
birds multi-label 8 1.16 93.50% 75.29% 66.35% 59.25% 42.31% 49.25% 45.52%
birds multi-label 8 1.32 92.02% 70.10% 65.96% 56.08% 34.04% 47.76% 39.75%
birds multi-label 16 - 94.90% 78.67% 65.60% 61.59% 54.10% 49.25% 51.56%
birds multi-label 16 1.02 94.08% 71.85% 64.24% 55.72% 46.15% 44.78% 45.45%
birds multi-label 16 1.04 93.83% 68.65% 65.03% 55.92% 44.12% 44.78% 44.44%
birds multi-label 16 1.08 94.00% 71.22% 66.46% 58.99% 45.71% 47.76% 46.72%
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birds multi-label 16 1.16 92.76% 68.68% 65.00% 56.85% 37.04% 44.78% 40.54%
birds multi-label 16 1.32 94.08% 75.52% 67.03% 59.50% 46.15% 44.78% 45.45%
birds multi-label 32 - 94.90% 75.55% 65.21% 57.48% 54.10% 49.25% 51.56%
birds multi-label 32 1.02 94.82% 73.85% 65.21% 57.24% 53.23% 49.25% 51.16%
birds multi-label 32 1.04 94.24% 69.04% 66.77% 56.18% 47.89% 50.75% 49.28%
birds multi-label 32 1.08 93.42% 64.92% 64.61% 51.53% 41.77% 49.25% 45.21%
birds multi-label 32 1.16 93.34% 70.05% 67.01% 55.94% 41.67% 52.24% 46.36%
birds multi-label 32 1.32 94.65% 75.91% 68.07% 61.30% 51.56% 49.25% 50.38%
birds multi-label 64 - 94.65% 72.14% 67.81% 58.14% 51.61% 47.76% 49.61%
birds multi-label 64 1.02 94.24% 67.32% 68.07% 55.01% 47.83% 49.25% 48.53%
birds multi-label 64 1.04 93.42% 68.75% 64.69% 51.06% 41.10% 44.78% 42.86%
birds multi-label 64 1.08 92.93% 68.26% 65.08% 52.37% 36.99% 40.30% 38.57%
birds multi-label 64 1.16 92.93% 73.46% 58.83% 49.58% 36.62% 38.81% 37.68%
birds multi-label 64 1.32 93.17% 65.94% 68.07% 49.76% 39.47% 44.78% 41.96%
birds multi-label 128 - 94.08% 63.65% 67.55% 54.72% 46.48% 49.25% 47.83%
birds multi-label 128 1.02 94.24% 73.26% 69.06% 56.43% 47.76% 47.76% 47.76%
birds multi-label 128 1.04 94.08% 70.80% 68.52% 58.35% 46.75% 53.73% 50.00%
birds multi-label 128 1.08 94.49% 76.32% 69.37% 59.29% 50.00% 53.73% 51.80%
birds multi-label 128 1.16 93.01% 65.29% 63.36% 47.71% 37.84% 41.79% 39.72%
birds multi-label 128 1.32 93.01% 74.34% 59.90% 50.02% 35.94% 34.33% 35.11%
birds multi-label 256 - 94.33% 71.64% 67.55% 58.29% 48.48% 47.76% 48.12%
birds multi-label 256 1.02 94.33% 70.21% 68.59% 57.62% 48.44% 46.27% 47.33%
birds multi-label 256 1.04 92.35% 62.96% 66.98% 51.74% 34.52% 43.28% 38.41%
birds multi-label 256 1.08 93.91% 73.41% 64.90% 53.68% 44.62% 43.28% 43.94%
birds multi-label 256 1.16 92.85% 69.90% 64.48% 54.19% 37.18% 43.28% 40.00%
birds multi-label 256 1.32 91.37% 63.88% 66.43% 51.38% 31.37% 47.76% 37.87%
birds multi-label 512 - 94.24% 71.15% 68.78% 58.66% 47.95% 52.24% 50.00%
birds multi-label 512 1.02 93.91% 71.12% 66.51% 56.02% 45.07% 47.76% 46.38%
birds multi-label 512 1.04 94.82% 76.95% 70.21% 65.82% 53.12% 50.75% 51.91%
birds multi-label 512 1.08 93.83% 71.35% 69.51% 55.22% 44.44% 47.76% 46.04%
birds multi-label 512 1.16 93.17% 70.36% 71.54% 60.64% 39.74% 46.27% 42.76%
birds multi-label 512 1.32 93.59% 71.66% 65.13% 54.13% 42.47% 46.27% 44.29%

Table 8.: Performance of multi-label models learned from the data set emotions
parameters performance measures

data set head ref. m l Ha.Acc. Ex.Prec. Ex.Rec. Ex.F1. Mi.Prec. Mi.Rec. Mi.F1
emotions multi-label 0 - 66.95% 64.52% 50.28% 39.98% 46.90% 48.18% 47.53%
emotions multi-label 0 1.02 69.77% 78.22% 44.63% 36.32% 51.58% 44.55% 47.80%
emotions multi-label 0 1.04 69.77% 78.22% 44.63% 36.32% 51.58% 44.55% 47.80%
emotions multi-label 0 1.08 69.49% 78.22% 43.79% 35.19% 51.06% 43.64% 47.06%
emotions multi-label 0 1.16 68.08% 73.14% 44.35% 35.19% 48.45% 42.73% 45.41%
emotions multi-label 0 1.32 67.23% 67.66% 49.44% 40.19% 47.37% 49.09% 48.21%
emotions multi-label 1 - 68.93% 66.07% 48.87% 42.77% 50.00% 48.18% 49.07%
emotions multi-label 1 1.02 69.49% 68.19% 50.00% 42.95% 50.96% 48.18% 49.53%
emotions multi-label 1 1.04 70.06% 74.04% 46.61% 40.52% 52.08% 45.45% 48.54%
emotions multi-label 1 1.08 68.64% 63.95% 44.92% 38.38% 49.48% 43.64% 46.38%
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emotions multi-label 1 1.16 70.62% 72.71% 43.79% 39.81% 53.49% 41.82% 46.94%
emotions multi-label 1 1.32 71.47% 71.38% 49.44% 41.95% 54.46% 50.00% 52.13%
emotions multi-label 2 - 70.06% 69.75% 54.24% 44.87% 51.75% 53.64% 52.68%
emotions multi-label 2 1.02 70.34% 65.88% 52.54% 45.52% 52.25% 52.73% 52.49%
emotions multi-label 2 1.04 69.49% 67.18% 49.44% 43.14% 50.96% 48.18% 49.53%
emotions multi-label 2 1.08 68.93% 62.49% 48.02% 41.34% 50.00% 48.18% 49.07%
emotions multi-label 2 1.16 71.19% 69.77% 49.44% 43.71% 54.00% 49.09% 51.43%
emotions multi-label 2 1.32 70.06% 64.41% 46.05% 40.38% 52.13% 44.55% 48.04%
emotions multi-label 4 - 71.19% 70.14% 55.08% 47.03% 53.77% 51.82% 52.78%
emotions multi-label 4 1.02 70.34% 64.10% 54.24% 44.99% 52.25% 52.73% 52.49%
emotions multi-label 4 1.04 70.06% 67.77% 50.28% 42.78% 51.89% 50.00% 50.93%
emotions multi-label 4 1.08 67.51% 57.74% 43.22% 38.37% 47.52% 43.64% 45.50%
emotions multi-label 4 1.16 71.75% 70.00% 48.59% 44.32% 55.32% 47.27% 50.98%
emotions multi-label 4 1.32 71.47% 70.20% 51.98% 44.56% 54.55% 49.09% 51.67%
emotions multi-label 8 - 73.45% 71.38% 53.11% 50.54% 58.00% 52.73% 55.24%
emotions multi-label 8 1.02 74.58% 75.28% 57.06% 54.13% 59.62% 56.36% 57.94%
emotions multi-label 8 1.04 74.01% 72.03% 56.50% 53.28% 58.65% 55.45% 57.01%
emotions multi-label 8 1.08 70.34% 66.44% 50.85% 44.07% 52.48% 48.18% 50.24%
emotions multi-label 8 1.16 75.42% 71.75% 49.72% 47.34% 63.22% 50.00% 55.84%
emotions multi-label 8 1.32 72.88% 64.41% 50.28% 44.37% 57.29% 50.00% 53.40%
emotions multi-label 16 - 70.06% 59.21% 50.28% 44.37% 51.79% 52.73% 52.25%
emotions multi-label 16 1.02 71.19% 60.11% 53.67% 45.21% 53.57% 54.55% 54.05%
emotions multi-label 16 1.04 70.34% 59.01% 50.28% 45.26% 52.34% 50.91% 51.61%
emotions multi-label 16 1.08 73.73% 68.90% 51.13% 46.34% 58.76% 51.82% 55.07%
emotions multi-label 16 1.16 72.03% 60.88% 48.02% 46.67% 55.56% 50.00% 52.63%
emotions multi-label 16 1.32 75.14% 73.59% 51.41% 46.33% 62.79% 49.09% 55.10%
emotions multi-label 32 - 74.86% 66.53% 55.65% 51.45% 60.19% 56.36% 58.22%
emotions multi-label 32 1.02 73.45% 64.97% 56.50% 48.63% 57.41% 56.36% 56.88%
emotions multi-label 32 1.04 73.16% 65.40% 52.26% 46.26% 57.28% 53.64% 55.40%
emotions multi-label 32 1.08 73.16% 64.24% 51.41% 48.87% 57.58% 51.82% 54.55%
emotions multi-label 32 1.16 70.34% 62.29% 49.15% 43.37% 52.43% 49.09% 50.70%
emotions multi-label 32 1.32 72.60% 69.49% 48.31% 43.64% 56.99% 48.18% 52.22%
emotions multi-label 64 - 74.01% 64.27% 57.91% 51.93% 58.18% 58.18% 58.18%
emotions multi-label 64 1.02 74.58% 65.11% 57.91% 52.55% 59.26% 58.18% 58.72%
emotions multi-label 64 1.04 73.45% 65.65% 55.65% 50.23% 57.55% 55.45% 56.48%
emotions multi-label 64 1.08 72.88% 66.64% 51.13% 48.01% 56.86% 52.73% 54.72%
emotions multi-label 64 1.16 72.88% 62.34% 53.11% 48.85% 56.73% 53.64% 55.14%
emotions multi-label 64 1.32 70.06% 60.73% 47.18% 44.58% 51.96% 48.18% 50.00%
emotions multi-label 128 - 73.73% 62.43% 52.54% 50.11% 58.59% 52.73% 55.50%
emotions multi-label 128 1.02 73.16% 63.28% 51.69% 49.27% 57.58% 51.82% 54.55%
emotions multi-label 128 1.04 74.01% 63.84% 51.13% 49.27% 59.57% 50.91% 54.90%
emotions multi-label 128 1.08 74.86% 69.77% 55.08% 50.89% 61.05% 52.73% 56.59%
emotions multi-label 128 1.16 75.42% 71.10% 55.37% 51.67% 62.11% 53.64% 57.56%
emotions multi-label 128 1.32 72.88% 63.42% 57.34% 53.82% 56.48% 55.45% 55.96%
emotions multi-label 256 - 74.58% 63.84% 58.76% 54.01% 59.43% 57.27% 58.33%
emotions multi-label 256 1.02 74.01% 63.56% 55.93% 50.28% 58.65% 55.45% 57.01%
emotions multi-label 256 1.04 73.73% 62.01% 58.47% 52.32% 57.66% 58.18% 57.92%
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emotions multi-label 256 1.08 75.71% 67.91% 64.12% 59.45% 60.34% 63.64% 61.95%
emotions multi-label 256 1.16 73.16% 65.25% 56.78% 50.74% 57.28% 53.64% 55.40%
emotions multi-label 256 1.32 76.27% 70.06% 57.06% 53.60% 62.75% 58.18% 60.38%
emotions multi-label 512 - 71.19% 57.91% 48.31% 44.80% 53.85% 50.91% 52.34%
emotions multi-label 512 1.02 73.16% 62.01% 57.63% 50.10% 57.01% 55.45% 56.22%
emotions multi-label 512 1.04 75.42% 66.67% 48.87% 47.40% 63.22% 50.00% 55.84%
emotions multi-label 512 1.08 72.03% 57.91% 50.28% 48.42% 55.34% 51.82% 53.52%
emotions multi-label 512 1.16 74.01% 62.71% 59.04% 54.56% 58.04% 59.09% 58.56%
emotions multi-label 512 1.32 72.88% 57.49% 58.76% 53.75% 55.74% 61.82% 58.62%

Table 9.: Performance of multi-label models learned from the data set yeast
parameters performance measures

data set head ref. m l Ha.Acc. Ex.Prec. Ex.Rec. Ex.F1. Mi.Prec. Mi.Rec. Mi.F1
yeast multi-label 0 - 67.52% 52.81% 50.64% 46.85% 46.55% 51.03% 48.69%
yeast multi-label 0 1.02 68.38% 54.59% 49.56% 46.36% 47.73% 49.46% 48.58%
yeast multi-label 0 1.04 68.44% 53.99% 49.77% 46.47% 47.83% 49.75% 48.77%
yeast multi-label 0 1.08 68.44% 54.17% 49.81% 46.49% 47.83% 49.75% 48.77%
yeast multi-label 0 1.16 67.49% 53.12% 48.88% 45.60% 46.38% 49.07% 47.69%
yeast multi-label 0 1.32 67.46% 53.24% 49.14% 45.48% 46.30% 48.58% 47.41%
yeast multi-label 1 - 71.96% 56.37% 51.04% 49.58% 53.77% 51.03% 52.37%
yeast multi-label 1 1.02 71.58% 56.34% 50.28% 48.95% 53.07% 50.83% 51.93%
yeast multi-label 1 1.04 72.38% 57.76% 53.07% 50.98% 54.34% 53.48% 53.91%
yeast multi-label 1 1.08 71.19% 55.60% 49.45% 48.09% 52.43% 49.75% 51.06%
yeast multi-label 1 1.16 72.53% 56.24% 52.80% 50.74% 54.59% 53.68% 54.13%
yeast multi-label 1 1.32 71.22% 53.56% 49.20% 47.49% 52.47% 50.05% 51.23%
yeast multi-label 2 - 70.92% 55.07% 50.29% 48.86% 51.91% 50.64% 51.27%
yeast multi-label 2 1.02 71.81% 56.42% 51.78% 50.28% 53.43% 52.01% 52.71%
yeast multi-label 2 1.04 71.67% 55.75% 51.70% 49.68% 53.15% 52.11% 52.63%
yeast multi-label 2 1.08 71.90% 55.68% 50.25% 48.90% 53.67% 50.93% 52.27%
yeast multi-label 2 1.16 71.96% 55.20% 51.48% 50.40% 53.62% 52.99% 53.31%
yeast multi-label 2 1.32 71.70% 54.94% 53.78% 50.83% 53.09% 53.88% 53.48%
yeast multi-label 4 - 72.17% 56.65% 52.30% 51.10% 54.03% 52.60% 53.31%
yeast multi-label 4 1.02 73.03% 58.34% 53.33% 51.51% 55.54% 53.58% 54.55%
yeast multi-label 4 1.04 72.88% 56.62% 51.56% 50.80% 55.37% 52.60% 53.95%
yeast multi-label 4 1.08 72.91% 57.13% 53.04% 51.11% 55.31% 53.68% 54.48%
yeast multi-label 4 1.16 72.38% 55.94% 52.93% 51.14% 54.37% 53.09% 53.72%
yeast multi-label 4 1.32 71.84% 56.42% 53.34% 50.31% 53.42% 52.89% 53.16%
yeast multi-label 8 - 72.79% 57.88% 52.82% 51.32% 55.13% 53.29% 54.19%
yeast multi-label 8 1.02 73.24% 59.11% 52.42% 51.01% 55.98% 53.29% 54.60%
yeast multi-label 8 1.04 73.09% 58.50% 52.35% 50.74% 55.70% 53.19% 54.42%
yeast multi-label 8 1.08 73.59% 59.78% 54.23% 52.37% 56.54% 54.27% 55.38%
yeast multi-label 8 1.16 72.29% 55.66% 53.59% 50.76% 54.14% 53.88% 54.01%
yeast multi-label 8 1.32 71.40% 57.04% 53.82% 51.19% 52.61% 53.39% 53.00%
yeast multi-label 16 - 72.91% 58.83% 53.94% 51.92% 55.37% 53.09% 54.21%
yeast multi-label 16 1.02 73.06% 59.51% 54.10% 51.88% 55.57% 53.88% 54.71%
yeast multi-label 16 1.04 73.33% 57.75% 52.28% 50.58% 56.32% 52.01% 54.08%
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yeast multi-label 16 1.08 72.58% 57.37% 53.69% 51.01% 54.61% 54.66% 54.63%
yeast multi-label 16 1.16 72.14% 55.71% 52.73% 50.00% 53.97% 52.70% 53.33%
yeast multi-label 16 1.32 71.93% 57.51% 53.50% 50.36% 53.53% 53.58% 53.56%
yeast multi-label 32 - 71.81% 57.25% 50.93% 50.08% 53.43% 52.01% 52.71%
yeast multi-label 32 1.02 72.79% 57.80% 53.78% 51.75% 55.03% 54.17% 54.60%
yeast multi-label 32 1.04 72.97% 58.44% 53.92% 52.28% 55.43% 53.58% 54.49%
yeast multi-label 32 1.08 72.44% 56.49% 52.80% 50.85% 54.43% 53.68% 54.05%
yeast multi-label 32 1.16 72.26% 54.85% 54.86% 51.47% 54.03% 54.66% 54.34%
yeast multi-label 32 1.32 72.23% 56.38% 53.29% 50.27% 54.04% 53.78% 53.91%
yeast multi-label 64 - 73.80% 59.86% 55.45% 53.95% 56.84% 55.05% 55.93%
yeast multi-label 64 1.02 74.99% 62.06% 55.42% 54.70% 59.16% 55.45% 57.24%
yeast multi-label 64 1.04 72.97% 58.19% 54.17% 52.57% 55.37% 54.17% 54.76%
yeast multi-label 64 1.08 73.00% 58.60% 55.50% 53.11% 55.26% 55.64% 55.45%
yeast multi-label 64 1.16 72.70% 56.34% 55.88% 52.70% 54.67% 56.33% 55.49%
yeast multi-label 64 1.32 72.67% 56.79% 54.36% 51.24% 54.79% 54.47% 54.63%
yeast multi-label 128 - 73.30% 57.67% 54.56% 52.53% 55.98% 54.17% 55.06%
yeast multi-label 128 1.02 72.70% 56.98% 57.05% 53.66% 54.56% 57.51% 56.00%
yeast multi-label 128 1.04 74.01% 59.54% 58.01% 54.85% 56.91% 57.41% 57.16%
yeast multi-label 128 1.08 73.59% 57.98% 54.26% 52.72% 56.41% 55.25% 55.83%
yeast multi-label 128 1.16 74.33% 57.77% 56.98% 54.28% 57.46% 57.80% 57.63%
yeast multi-label 128 1.32 71.84% 56.38% 53.24% 50.88% 53.41% 53.09% 53.25%
yeast multi-label 256 - 72.70% 56.29% 55.24% 51.69% 54.79% 54.96% 54.88%
yeast multi-label 256 1.02 71.96% 54.34% 55.54% 51.65% 53.40% 56.33% 54.82%
yeast multi-label 256 1.04 73.06% 57.10% 54.66% 51.70% 55.50% 54.47% 54.98%
yeast multi-label 256 1.08 73.15% 57.43% 59.19% 55.35% 55.13% 59.57% 57.26%
yeast multi-label 256 1.16 73.47% 57.60% 55.04% 53.01% 56.28% 54.56% 55.41%
yeast multi-label 256 1.32 72.44% 57.65% 56.09% 52.33% 54.32% 54.86% 54.59%
yeast multi-label 512 - 72.94% 57.79% 57.81% 54.26% 54.97% 57.51% 56.21%
yeast multi-label 512 1.02 72.61% 55.92% 57.52% 53.37% 54.44% 57.21% 55.79%
yeast multi-label 512 1.04 72.94% 56.40% 54.64% 51.93% 55.28% 54.47% 54.87%
yeast multi-label 512 1.08 72.29% 57.20% 54.24% 51.68% 54.10% 54.37% 54.23%
yeast multi-label 512 1.16 72.88% 56.43% 54.97% 52.38% 55.16% 54.56% 54.86%
yeast multi-label 512 1.32 72.70% 55.74% 55.60% 52.00% 54.68% 56.23% 55.44%

Table 10.: Performance of multi-label models learned from the data set medical
parameters performance measures

data set head ref. m l Ha.Acc. Ex.Prec. Ex.Rec. Ex.F1. Mi.Prec. Mi.Rec. Mi.F1
medical multi-label 0 - 97.46% 69.44% 78.97% 64.30% 53.01% 79.18% 63.50%
medical multi-label 0 1.02 97.23% 67.93% 76.67% 61.28% 50.27% 77.14% 60.87%
medical multi-label 0 1.04 97.23% 67.93% 76.67% 61.28% 50.27% 77.14% 60.87%
medical multi-label 0 1.08 97.23% 67.93% 76.67% 61.28% 50.27% 77.14% 60.87%
medical multi-label 0 1.16 97.24% 68.10% 76.67% 61.38% 50.40% 77.14% 60.97%
medical multi-label 0 1.32 97.26% 68.11% 77.44% 61.96% 50.66% 77.96% 61.41%
medical multi-label 1 - 98.10% 76.10% 75.90% 66.90% 63.27% 75.92% 69.02%
medical multi-label 1 1.02 98.12% 76.10% 76.41% 67.41% 63.51% 76.73% 69.50%
medical multi-label 1 1.04 98.10% 75.85% 76.41% 67.24% 63.09% 76.73% 69.24%

46



medical multi-label 1 1.08 98.14% 76.27% 77.18% 68.17% 63.76% 77.55% 69.98%
medical multi-label 1 1.16 98.11% 75.98% 76.15% 67.24% 63.30% 76.73% 69.37%
medical multi-label 1 1.32 98.11% 76.07% 75.90% 67.04% 63.30% 76.73% 69.37%
medical multi-label 2 - 98.29% 78.12% 75.64% 68.31% 67.27% 75.51% 71.15%
medical multi-label 2 1.02 98.28% 77.86% 75.13% 67.97% 67.15% 75.10% 70.91%
medical multi-label 2 1.04 98.28% 77.86% 75.13% 67.97% 67.15% 75.10% 70.91%
medical multi-label 2 1.08 98.36% 78.89% 76.67% 69.40% 68.23% 77.14% 72.41%
medical multi-label 2 1.16 98.31% 78.97% 75.64% 68.63% 67.64% 75.92% 71.54%
medical multi-label 2 1.32 98.37% 80.04% 76.67% 69.49% 68.48% 77.14% 72.55%
medical multi-label 4 - 98.53% 81.79% 76.41% 71.18% 72.14% 77.14% 74.56%
medical multi-label 4 1.02 98.54% 81.79% 76.92% 71.69% 72.24% 77.55% 74.80%
medical multi-label 4 1.04 98.53% 81.79% 76.41% 71.18% 72.14% 77.14% 74.56%
medical multi-label 4 1.08 98.55% 82.82% 75.90% 71.01% 72.87% 76.73% 74.75%
medical multi-label 4 1.16 98.45% 82.22% 74.36% 68.96% 71.04% 75.10% 73.02%
medical multi-label 4 1.32 98.30% 80.06% 75.38% 69.49% 67.39% 75.92% 71.40%
medical multi-label 8 - 98.77% 84.79% 79.49% 74.65% 76.65% 80.41% 78.49%
medical multi-label 8 1.02 98.78% 84.53% 79.23% 74.75% 77.17% 80.00% 78.56%
medical multi-label 8 1.04 98.79% 84.53% 79.49% 74.92% 77.25% 80.41% 78.80%
medical multi-label 8 1.08 98.78% 84.36% 79.23% 74.58% 77.17% 80.00% 78.56%
medical multi-label 8 1.16 98.81% 85.31% 80.77% 75.92% 77.43% 81.22% 79.28%
medical multi-label 8 1.32 98.45% 83.02% 77.95% 73.06% 69.53% 79.18% 74.05%
medical multi-label 16 - 98.85% 85.64% 80.51% 77.33% 78.80% 80.41% 79.60%
medical multi-label 16 1.02 98.84% 85.56% 79.23% 76.50% 79.18% 79.18% 79.18%
medical multi-label 16 1.04 98.84% 85.04% 79.23% 76.50% 79.18% 79.18% 79.18%
medical multi-label 16 1.08 98.75% 84.54% 80.00% 76.05% 76.26% 80.00% 78.09%
medical multi-label 16 1.16 98.62% 85.25% 78.97% 74.24% 73.66% 78.78% 76.13%
medical multi-label 16 1.32 98.44% 84.68% 75.90% 71.89% 70.45% 75.92% 73.08%
medical multi-label 32 - 98.89% 87.44% 79.49% 76.91% 81.09% 78.78% 79.92%
medical multi-label 32 1.02 98.89% 87.09% 79.23% 76.75% 81.09% 78.78% 79.92%
medical multi-label 32 1.04 98.84% 86.51% 79.23% 76.74% 79.42% 78.78% 79.10%
medical multi-label 32 1.08 98.72% 84.78% 79.23% 76.02% 76.49% 78.37% 77.42%
medical multi-label 32 1.16 98.67% 85.32% 78.97% 75.29% 75.20% 77.96% 76.55%
medical multi-label 32 1.32 98.14% 82.23% 80.26% 73.83% 63.40% 79.18% 70.42%
medical multi-label 64 - 98.97% 87.69% 81.03% 79.13% 82.98% 79.59% 81.25%
medical multi-label 64 1.02 98.88% 86.36% 80.51% 78.28% 80.50% 79.18% 79.84%
medical multi-label 64 1.04 98.92% 87.47% 80.00% 78.09% 81.78% 78.78% 80.25%
medical multi-label 64 1.08 98.89% 86.80% 80.51% 77.54% 80.58% 79.59% 80.08%
medical multi-label 64 1.16 98.70% 85.49% 78.46% 75.63% 76.73% 76.73% 76.73%
medical multi-label 64 1.32 98.67% 86.19% 80.51% 77.39% 75.00% 78.37% 76.65%
medical multi-label 128 - 99.04% 87.86% 84.36% 81.69% 82.59% 83.27% 82.93%
medical multi-label 128 1.02 98.92% 86.41% 82.31% 79.33% 80.49% 80.82% 80.65%
medical multi-label 128 1.04 99.01% 87.78% 82.56% 80.55% 83.19% 80.82% 81.99%
medical multi-label 128 1.08 98.80% 85.40% 81.28% 78.50% 78.00% 79.59% 78.79%
medical multi-label 128 1.16 98.34% 82.89% 83.85% 77.49% 66.34% 82.04% 73.36%
medical multi-label 128 1.32 98.52% 84.39% 80.51% 75.93% 71.06% 79.18% 74.90%
medical multi-label 256 - 99.00% 85.90% 84.10% 81.33% 81.53% 82.86% 82.19%
medical multi-label 256 1.02 98.93% 85.98% 82.31% 79.86% 81.33% 80.00% 80.66%
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medical multi-label 256 1.04 98.77% 84.36% 79.49% 76.99% 78.42% 77.14% 77.78%
medical multi-label 256 1.08 98.85% 84.69% 81.28% 78.37% 78.80% 80.41% 79.60%
medical multi-label 256 1.16 98.25% 80.89% 82.82% 74.21% 64.72% 81.63% 72.20%
medical multi-label 256 1.32 97.54% 76.92% 82.82% 72.21% 53.95% 80.82% 64.71%
medical multi-label 512 - 99.02% 85.30% 85.13% 82.12% 81.42% 84.08% 82.73%
medical multi-label 512 1.02 98.78% 85.30% 81.79% 78.09% 77.17% 80.00% 78.56%
medical multi-label 512 1.04 98.87% 86.49% 80.00% 77.81% 80.67% 78.37% 79.50%
medical multi-label 512 1.08 98.83% 85.51% 78.21% 76.63% 80.60% 76.33% 78.41%
medical multi-label 512 1.16 98.04% 79.32% 80.26% 73.38% 61.66% 78.78% 69.18%
medical multi-label 512 1.32 97.97% 79.04% 79.49% 71.79% 60.57% 78.37% 68.33%

Table 11.: Performance of multi-label models learned from the data set scene
parameters performance measures

data set head ref. m l Ha.Acc. Ex.Prec. Ex.Rec. Ex.F1. Mi.Prec. Mi.Rec. Mi.F1
scene multi-label 0 - 77.43% 60.20% 56.25% 41.02% 40.50% 56.42% 47.15%
scene multi-label 0 1.02 78.12% 65.76% 53.54% 39.96% 41.32% 53.70% 46.70%
scene multi-label 0 1.04 78.47% 66.04% 53.96% 40.21% 42.04% 54.47% 47.46%
scene multi-label 0 1.08 79.03% 66.00% 56.87% 43.09% 43.36% 57.20% 49.33%
scene multi-label 0 1.16 77.43% 63.41% 55.42% 40.96% 40.40% 55.64% 46.81%
scene multi-label 0 1.32 77.08% 61.87% 57.92% 42.01% 40.11% 57.59% 47.28%
scene multi-label 1 - 80.49% 66.62% 51.46% 40.10% 45.86% 51.75% 48.63%
scene multi-label 1 1.02 80.28% 66.19% 53.33% 41.38% 45.54% 53.70% 49.29%
scene multi-label 1 1.04 80.35% 66.75% 52.92% 41.18% 45.67% 53.31% 49.19%
scene multi-label 1 1.08 80.21% 64.44% 56.67% 44.70% 45.62% 56.81% 50.61%
scene multi-label 1 1.16 81.60% 67.58% 58.33% 45.61% 48.70% 58.37% 53.10%
scene multi-label 1 1.32 80.83% 66.42% 54.79% 42.99% 46.86% 55.25% 50.71%
scene multi-label 2 - 80.83% 66.18% 54.58% 43.29% 46.86% 55.25% 50.71%
scene multi-label 2 1.02 80.90% 66.18% 55.83% 43.73% 47.08% 56.42% 51.33%
scene multi-label 2 1.04 80.62% 65.94% 54.58% 43.19% 46.41% 55.25% 50.44%
scene multi-label 2 1.08 80.90% 66.81% 55.83% 44.38% 47.08% 56.42% 51.33%
scene multi-label 2 1.16 81.81% 67.43% 58.13% 47.26% 49.18% 58.37% 53.38%
scene multi-label 2 1.32 81.32% 68.99% 55.21% 44.03% 47.97% 55.25% 51.36%
scene multi-label 4 - 82.15% 69.55% 55.00% 43.75% 50.00% 55.25% 52.50%
scene multi-label 4 1.02 81.94% 68.54% 54.58% 43.51% 49.47% 54.86% 52.03%
scene multi-label 4 1.04 82.01% 68.51% 54.58% 43.56% 49.65% 54.86% 52.13%
scene multi-label 4 1.08 81.60% 67.03% 54.58% 43.68% 48.64% 55.64% 51.91%
scene multi-label 4 1.16 81.04% 65.35% 52.71% 42.74% 47.24% 53.31% 50.09%
scene multi-label 4 1.32 82.64% 68.69% 58.13% 47.78% 51.21% 57.59% 54.21%
scene multi-label 8 - 81.88% 66.70% 52.29% 43.65% 49.28% 53.31% 51.21%
scene multi-label 8 1.02 82.36% 68.07% 55.83% 46.83% 50.52% 56.81% 53.48%
scene multi-label 8 1.04 82.85% 68.28% 57.08% 48.51% 51.74% 57.98% 54.68%
scene multi-label 8 1.08 82.43% 67.12% 55.00% 45.96% 50.71% 55.25% 52.89%
scene multi-label 8 1.16 82.43% 66.35% 57.29% 47.32% 50.68% 57.59% 53.92%
scene multi-label 8 1.32 82.71% 69.73% 58.96% 48.82% 51.36% 58.75% 54.81%
scene multi-label 16 - 84.72% 72.26% 58.96% 51.06% 56.98% 58.75% 57.85%
scene multi-label 16 1.02 84.72% 72.34% 58.54% 50.72% 57.03% 58.37% 57.69%
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scene multi-label 16 1.04 84.51% 71.18% 59.79% 51.37% 56.30% 59.14% 57.69%
scene multi-label 16 1.08 84.79% 71.15% 59.58% 51.25% 57.14% 59.14% 58.13%
scene multi-label 16 1.16 83.47% 67.08% 61.67% 51.60% 53.22% 61.09% 56.88%
scene multi-label 16 1.32 82.43% 68.12% 55.21% 46.62% 50.71% 55.25% 52.89%
scene multi-label 32 - 83.47% 67.01% 57.71% 49.44% 53.41% 57.98% 55.60%
scene multi-label 32 1.02 83.82% 66.35% 59.38% 51.29% 54.29% 59.14% 56.61%
scene multi-label 32 1.04 84.58% 69.86% 59.17% 51.15% 56.51% 59.14% 57.79%
scene multi-label 32 1.08 84.93% 70.38% 62.08% 52.99% 57.19% 61.87% 59.44%
scene multi-label 32 1.16 83.89% 68.76% 57.29% 48.93% 54.61% 57.59% 56.06%
scene multi-label 32 1.32 85.21% 71.01% 60.21% 53.11% 58.33% 59.92% 59.12%
scene multi-label 64 - 85.97% 74.24% 63.96% 56.01% 60.22% 63.04% 61.60%
scene multi-label 64 1.02 85.97% 73.99% 63.75% 56.00% 60.30% 62.65% 61.45%
scene multi-label 64 1.04 86.18% 73.40% 64.17% 56.53% 60.74% 63.81% 62.24%
scene multi-label 64 1.08 84.86% 70.35% 62.50% 54.31% 56.94% 62.26% 59.48%
scene multi-label 64 1.16 86.04% 72.47% 65.42% 57.17% 60.07% 64.98% 62.43%
scene multi-label 64 1.32 84.17% 69.70% 59.58% 51.38% 55.23% 59.53% 57.30%
scene multi-label 128 - 86.11% 72.64% 63.54% 56.04% 60.52% 63.81% 62.12%
scene multi-label 128 1.02 86.18% 72.29% 65.21% 57.01% 60.43% 65.37% 62.80%
scene multi-label 128 1.04 85.83% 72.78% 64.79% 56.57% 59.50% 64.59% 61.94%
scene multi-label 128 1.08 86.53% 73.37% 64.58% 57.47% 61.54% 65.37% 63.40%
scene multi-label 128 1.16 84.65% 72.19% 59.79% 51.83% 56.72% 59.14% 57.90%
scene multi-label 128 1.32 85.83% 74.27% 58.54% 53.14% 60.91% 57.59% 59.20%
scene multi-label 256 - 85.56% 69.96% 64.38% 57.04% 58.72% 64.20% 61.34%
scene multi-label 256 1.02 85.83% 69.72% 66.25% 58.64% 59.36% 65.37% 62.22%
scene multi-label 256 1.04 86.74% 73.65% 65.42% 58.32% 62.41% 64.59% 63.48%
scene multi-label 256 1.08 87.08% 75.99% 63.12% 57.88% 64.14% 62.65% 63.39%
scene multi-label 256 1.16 86.81% 75.97% 60.83% 56.54% 63.79% 60.31% 62.00%
scene multi-label 256 1.32 87.01% 77.92% 57.92% 53.75% 65.62% 57.20% 61.12%
scene multi-label 512 - 86.18% 70.97% 67.50% 59.97% 60.28% 66.15% 63.08%
scene multi-label 512 1.02 86.88% 73.40% 64.79% 58.67% 63.08% 63.81% 63.44%
scene multi-label 512 1.04 86.04% 72.67% 65.00% 57.39% 60.29% 63.81% 62.00%
scene multi-label 512 1.08 87.64% 75.38% 69.17% 62.60% 64.58% 68.09% 66.29%
scene multi-label 512 1.16 87.71% 75.56% 66.04% 59.97% 65.62% 65.37% 65.50%
scene multi-label 512 1.32 85.97% 77.85% 60.42% 53.39% 60.96% 59.53% 60.24%

Table 12.: Performance of single-label models learned from the data set birds
parameters performance measures

data set head ref. m Ha.Acc. Ex.Prec. Ex.Rec. Ex.F1. Mi.Prec. Mi.Rec. Mi.F1
birds single-label 0 92.35% 69.74% 61.88% 55.12% 32.43% 35.82% 34.04%
birds single-label 1 93.50% 73.75% 64.22% 57.77% 41.18% 41.79% 41.48%
birds single-label 2 93.91% 72.58% 67.08% 57.59% 44.93% 46.27% 45.59%
birds single-label 4 94.16% 71.93% 66.56% 57.30% 46.97% 46.27% 46.62%
birds single-label 8 94.33% 74.90% 65.91% 57.70% 48.48% 47.76% 48.12%
birds single-label 16 94.90% 78.67% 65.60% 61.59% 54.10% 49.25% 51.56%
birds single-label 32 94.90% 75.55% 65.21% 57.48% 54.10% 49.25% 51.56%
birds single-label 64 94.65% 72.14% 67.81% 58.14% 51.61% 47.76% 49.61%
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birds single-label 128 94.08% 63.65% 67.55% 54.72% 46.48% 49.25% 47.83%
birds single-label 256 94.33% 71.64% 67.55% 58.29% 48.48% 47.76% 48.12%
birds single-label 512 94.24% 71.15% 68.78% 58.66% 47.95% 52.24% 50.00%

Table 13.: Performance of single-label models learned from the data set emotions
parameters performance measures

data set head ref. m Ha.Acc. Ex.Prec. Ex.Rec. Ex.F1. Mi.Prec. Mi.Rec. Mi.F1
emotions single-label 0 66.95% 64.52% 50.28% 39.98% 46.90% 48.18% 47.53%
emotions single-label 1 68.93% 66.07% 48.87% 42.77% 50.00% 48.18% 49.07%
emotions single-label 2 70.06% 69.75% 54.24% 44.87% 51.75% 53.64% 52.68%
emotions single-label 4 71.19% 70.14% 55.08% 47.03% 53.77% 51.82% 52.78%
emotions single-label 8 73.45% 71.38% 53.11% 50.54% 58.00% 52.73% 55.24%
emotions single-label 16 70.06% 59.21% 50.28% 44.37% 51.79% 52.73% 52.25%
emotions single-label 32 74.86% 66.53% 55.65% 51.45% 60.19% 56.36% 58.22%
emotions single-label 64 74.01% 64.27% 57.91% 51.93% 58.18% 58.18% 58.18%
emotions single-label 128 73.73% 62.43% 52.54% 50.11% 58.59% 52.73% 55.50%
emotions single-label 256 74.58% 63.84% 58.76% 54.01% 59.43% 57.27% 58.33%
emotions single-label 512 71.19% 57.91% 48.31% 44.80% 53.85% 50.91% 52.34%

Table 14.: Performance of single-label models learned from the data set yeast
parameters performance measures

data set head ref. m Ha.Acc. Ex.Prec. Ex.Rec. Ex.F1. Mi.Prec. Mi.Rec. Mi.F1
yeast single-label 0 67.52% 52.81% 50.64% 46.85% 46.55% 51.03% 48.69%
yeast single-label 1 71.93% 56.23% 51.04% 49.56% 53.72% 51.03% 52.34%
yeast single-label 2 70.90% 55.07% 50.29% 48.87% 51.86% 50.64% 51.24%
yeast single-label 4 72.17% 56.65% 52.30% 51.10% 54.03% 52.60% 53.31%
yeast single-label 8 72.79% 57.88% 52.82% 51.32% 55.13% 53.29% 54.19%
yeast single-label 16 72.91% 58.83% 53.94% 51.92% 55.37% 53.09% 54.21%
yeast single-label 32 71.81% 57.25% 50.93% 50.08% 53.43% 52.01% 52.71%
yeast single-label 64 73.80% 59.86% 55.45% 53.95% 56.84% 55.05% 55.93%
yeast single-label 128 73.30% 57.67% 54.56% 52.53% 55.98% 54.17% 55.06%
yeast single-label 256 72.70% 56.29% 55.24% 51.69% 54.79% 54.96% 54.88%
yeast single-label 512 72.94% 57.79% 57.81% 54.26% 54.97% 57.51% 56.21%

Table 15.: Performance of single-label models learned from the data set medical
parameters performance measures

data set head ref. m Ha.Acc. Ex.Prec. Ex.Rec. Ex.F1. Mi.Prec. Mi.Rec. Mi.F1
medical single-label 0 97.46% 69.44% 78.97% 64.30% 53.01% 79.18% 63.50%
medical single-label 1 98.10% 76.10% 75.90% 66.90% 63.27% 75.92% 69.02%
medical single-label 2 98.29% 78.12% 75.64% 68.31% 67.27% 75.51% 71.15%
medical single-label 4 98.53% 81.79% 76.41% 71.18% 72.14% 77.14% 74.56%
medical single-label 8 98.77% 84.79% 79.49% 74.65% 76.65% 80.41% 78.49%
medical single-label 16 98.85% 85.64% 80.51% 77.33% 78.80% 80.41% 79.60%
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medical single-label 32 98.89% 87.44% 79.49% 76.91% 81.09% 78.78% 79.92%
medical single-label 64 98.97% 87.69% 81.03% 79.13% 82.98% 79.59% 81.25%
medical single-label 128 99.04% 87.86% 84.36% 81.69% 82.59% 83.27% 82.93%
medical single-label 256 99.00% 85.90% 84.10% 81.33% 81.53% 82.86% 82.19%
medical single-label 512 99.02% 85.30% 85.13% 82.12% 81.42% 84.08% 82.73%

Table 16.: Performance of single-label models learned from the data set scene
parameters performance measures

data set head ref. m Ha.Acc. Ex.Prec. Ex.Rec. Ex.F1. Mi.Prec. Mi.Rec. Mi.F1
scene single-label 0 77.43% 60.20% 56.25% 41.02% 40.50% 56.42% 47.15%
scene single-label 1 80.49% 66.62% 51.46% 40.10% 45.86% 51.75% 48.63%
scene single-label 2 80.83% 66.18% 54.58% 43.29% 46.86% 55.25% 50.71%
scene single-label 4 82.15% 69.55% 55.00% 43.75% 50.00% 55.25% 52.50%
scene single-label 8 81.88% 66.70% 52.29% 43.65% 49.28% 53.31% 51.21%
scene single-label 16 84.72% 72.26% 58.96% 51.06% 56.98% 58.75% 57.85%
scene single-label 32 83.47% 67.01% 57.71% 49.44% 53.41% 57.98% 55.60%
scene single-label 64 85.97% 74.24% 63.96% 56.01% 60.22% 63.04% 61.60%
scene single-label 128 86.11% 72.64% 63.54% 56.04% 60.52% 63.81% 62.12%
scene single-label 256 85.56% 69.96% 64.38% 57.04% 58.72% 64.20% 61.34%
scene single-label 512 86.18% 70.97% 67.50% 59.97% 60.28% 66.15% 63.08%
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B. Model Characteristics

Table 17.: Model characteristics of multi-label models learned from the data set birds
parameters model characteristics runtime

data set head ref. m l #rules %MLHR Avg.Cond. Avg.MLH opt. #rules runtime
birds multi-label 0 - 518 0.00% 1.53 - 286 0:27:25
birds multi-label 0 1.02 370 49.46% 1.58 2.00 16 0:19:18
birds multi-label 0 1.04 370 49.46% 1.58 2.00 16 0:19:32
birds multi-label 0 1.08 370 49.46% 1.58 2.00 16 0:19:24
birds multi-label 0 1.16 370 49.46% 1.58 2.00 16 0:19:34
birds multi-label 0 1.32 369 49.32% 1.58 2.00 16 0:19:40
birds multi-label 1 - 446 0.00% 2.06 - 6 0:23:28
birds multi-label 1 1.02 397 11.08% 2.08 2.11 6 0:20:22
birds multi-label 1 1.04 392 11.99% 2.09 2.15 6 0:20:06
birds multi-label 1 1.08 386 13.47% 2.09 2.13 6 0:19:41
birds multi-label 1 1.16 372 18.28% 2.09 2.15 31 0:18:50
birds multi-label 1 1.32 366 27.05% 2.18 2.09 26 0:19:14
birds multi-label 2 - 417 0.48% 2.17 3.00 51 0:21:59
birds multi-label 2 1.02 386 8.81% 2.18 2.15 6 0:20:01
birds multi-label 2 1.04 386 8.81% 2.18 2.15 6 0:20:01
birds multi-label 2 1.08 385 8.05% 2.19 2.23 6 0:20:25
birds multi-label 2 1.16 381 9.71% 2.20 2.22 46 0:20:09
birds multi-label 2 1.32 357 19.05% 2.25 2.28 16 0:18:17
birds multi-label 4 - 393 0.00% 2.35 - 6 0:20:24
birds multi-label 4 1.02 365 6.58% 2.35 2.04 6 0:19:40
birds multi-label 4 1.04 366 6.56% 2.35 2.04 6 0:19:35
birds multi-label 4 1.08 367 6.54% 2.35 2.04 6 0:18:47
birds multi-label 4 1.16 362 10.22% 2.44 2.16 6 0:18:16
birds multi-label 4 1.32 352 21.02% 2.61 2.55 11 0:17:58
birds multi-label 8 - 355 0.00% 2.54 - 6 0:19:40
birds multi-label 8 1.02 337 5.64% 2.55 2.11 6 0:17:46
birds multi-label 8 1.04 334 6.59% 2.57 2.09 6 0:17:49
birds multi-label 8 1.08 332 7.53% 2.61 2.24 6 0:18:04
birds multi-label 8 1.16 322 13.35% 2.75 2.49 6 0:17:55
birds multi-label 8 1.32 327 25.08% 2.98 2.87 6 0:17:30
birds multi-label 16 - 322 0.31% 2.78 3.00 6 0:17:10
birds multi-label 16 1.02 313 4.47% 2.81 2.07 6 0:16:26
birds multi-label 16 1.04 316 5.70% 2.87 2.11 6 0:17:03
birds multi-label 16 1.08 323 6.81% 2.98 2.32 6 0:17:11
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birds multi-label 16 1.16 325 18.15% 3.11 2.90 6 0:17:28
birds multi-label 16 1.32 322 24.84% 3.27 3.11 6 0:17:49
birds multi-label 32 - 308 0.00% 3.01 - 6 0:16:43
birds multi-label 32 1.02 300 3.33% 3.06 2.00 6 0:15:50
birds multi-label 32 1.04 299 5.69% 3.18 2.18 6 0:15:46
birds multi-label 32 1.08 302 13.91% 3.32 2.90 6 0:16:52
birds multi-label 32 1.16 305 15.41% 3.51 3.00 6 0:16:50
birds multi-label 32 1.32 312 20.19% 3.75 3.02 6 0:17:14
birds multi-label 64 - 288 0.00% 3.39 - 11 0:15:55
birds multi-label 64 1.02 283 3.53% 3.45 2.20 11 0:15:24
birds multi-label 64 1.04 276 12.32% 3.62 2.85 11 0:15:39
birds multi-label 64 1.08 270 11.85% 3.81 3.03 11 0:16:38
birds multi-label 64 1.16 278 13.67% 4.18 3.16 11 0:17:14
birds multi-label 64 1.32 319 20.06% 4.50 3.03 11 0:18:21
birds multi-label 128 - 249 0.00% 3.89 - 11 0:15:32
birds multi-label 128 1.02 268 5.22% 4.15 2.86 11 0:15:33
birds multi-label 128 1.04 257 9.34% 4.27 2.92 11 0:16:22
birds multi-label 128 1.08 269 10.04% 4.63 2.96 16 0:17:46
birds multi-label 128 1.16 285 9.82% 5.00 3.29 6 0:19:16
birds multi-label 128 1.32 292 24.32% 5.41 2.94 11 0:20:59
birds multi-label 256 - 247 0.00% 4.47 - 6 0:15:53
birds multi-label 256 1.02 240 5.83% 4.80 2.71 6 0:17:04
birds multi-label 256 1.04 263 6.46% 5.16 3.06 11 0:19:09
birds multi-label 256 1.08 280 8.57% 5.35 3.21 11 0:19:52
birds multi-label 256 1.16 282 10.99% 5.56 3.16 6 0:21:05
birds multi-label 256 1.32 317 20.82% 5.95 2.95 16 0:24:29
birds multi-label 512 - 237 0.00% 4.67 - 6 0:16:29
birds multi-label 512 1.02 273 4.76% 5.29 3.23 6 0:18:26
birds multi-label 512 1.04 251 5.98% 5.43 3.07 6 0:20:22
birds multi-label 512 1.08 258 10.08% 5.75 3.23 6 0:21:54
birds multi-label 512 1.16 305 7.87% 6.10 3.21 16 0:24:12
birds multi-label 512 1.32 333 20.72% 6.37 2.94 11 0:26:48

Table 18.: Model characteristics of multi-label models learned from the data set emotions
parameters model characteristics runtime

data set head ref. m l #rules %MLHR Avg.Cond. Avg.MLH opt. #rules runtime
emotions multi-label 0 - 841 0.00% 1.74 - 241 0:11:47
emotions multi-label 0 1.02 550 64.18% 1.81 2.00 181 0:07:36
emotions multi-label 0 1.04 550 64.18% 1.81 2.00 181 0:07:59
emotions multi-label 0 1.08 550 64.18% 1.81 2.00 181 0:07:58
emotions multi-label 0 1.16 546 64.29% 1.80 2.00 181 0:07:27
emotions multi-label 0 1.32 541 64.70% 1.80 2.00 181 0:07:49
emotions multi-label 1 - 509 0.00% 2.58 - 231 0:07:03
emotions multi-label 1 1.02 467 10.28% 2.59 2.00 166 0:06:27
emotions multi-label 1 1.04 471 12.74% 2.62 2.00 176 0:06:37
emotions multi-label 1 1.08 459 14.38% 2.62 2.00 6 0:06:21
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emotions multi-label 1 1.16 449 23.16% 2.62 2.00 6 0:06:16
emotions multi-label 1 1.32 436 36.47% 2.67 2.00 6 0:06:39
emotions multi-label 2 - 439 0.00% 2.73 - 6 0:06:16
emotions multi-label 2 1.02 429 8.62% 2.72 2.00 6 0:05:59
emotions multi-label 2 1.04 440 8.86% 2.71 2.00 6 0:06:09
emotions multi-label 2 1.08 430 11.16% 2.73 2.00 6 0:06:09
emotions multi-label 2 1.16 413 15.98% 2.78 2.02 6 0:06:06
emotions multi-label 2 1.32 421 21.85% 2.82 2.01 6 0:05:51
emotions multi-label 4 - 399 0.00% 2.88 - 6 0:05:30
emotions multi-label 4 1.02 389 6.43% 2.89 2.00 66 0:05:32
emotions multi-label 4 1.04 386 6.48% 2.89 2.00 106 0:05:19
emotions multi-label 4 1.08 366 9.56% 2.93 2.00 6 0:05:27
emotions multi-label 4 1.16 362 10.50% 2.95 2.03 6 0:05:26
emotions multi-label 4 1.32 359 18.38% 3.12 2.03 6 0:04:59
emotions multi-label 8 - 334 0.00% 3.12 - 116 0:04:54
emotions multi-label 8 1.02 316 5.06% 3.10 2.00 151 0:04:35
emotions multi-label 8 1.04 314 3.50% 3.11 2.00 151 0:04:31
emotions multi-label 8 1.08 303 6.60% 3.18 2.00 131 0:04:29
emotions multi-label 8 1.16 313 11.18% 3.25 2.00 6 0:04:44
emotions multi-label 8 1.32 310 18.06% 3.34 2.20 96 0:04:38
emotions multi-label 16 - 256 0.00% 3.53 - 6 0:04:22
emotions multi-label 16 1.02 259 3.09% 3.50 2.00 51 0:03:59
emotions multi-label 16 1.04 268 4.10% 3.51 2.00 31 0:04:01
emotions multi-label 16 1.08 265 5.28% 3.54 2.07 31 0:04:13
emotions multi-label 16 1.16 279 9.32% 3.65 2.19 6 0:04:05
emotions multi-label 16 1.32 279 13.26% 3.80 2.08 41 0:04:10
emotions multi-label 32 - 240 0.00% 3.95 - 36 0:03:53
emotions multi-label 32 1.02 236 1.27% 3.95 2.00 81 0:03:49
emotions multi-label 32 1.04 239 1.26% 3.98 2.00 36 0:04:00
emotions multi-label 32 1.08 239 2.09% 3.95 2.00 6 0:03:57
emotions multi-label 32 1.16 247 4.05% 4.04 2.20 6 0:03:52
emotions multi-label 32 1.32 269 9.29% 4.28 2.12 6 0:04:17
emotions multi-label 64 - 195 0.00% 4.37 - 16 0:03:49
emotions multi-label 64 1.02 194 1.03% 4.41 2.00 16 0:03:42
emotions multi-label 64 1.04 204 1.96% 4.38 2.00 61 0:03:47
emotions multi-label 64 1.08 194 3.09% 4.47 2.00 26 0:03:47
emotions multi-label 64 1.16 207 3.38% 4.63 2.00 11 0:04:05
emotions multi-label 64 1.32 266 6.02% 4.86 2.31 41 0:04:18
emotions multi-label 128 - 218 0.00% 4.86 - 16 0:03:39
emotions multi-label 128 1.02 215 0.47% 4.89 2.00 16 0:03:50
emotions multi-label 128 1.04 227 0.44% 4.89 2.00 41 0:03:42
emotions multi-label 128 1.08 206 1.94% 5.00 2.00 36 0:03:50
emotions multi-label 128 1.16 204 3.43% 5.12 2.14 56 0:04:15
emotions multi-label 128 1.32 239 8.79% 5.38 2.05 26 0:04:40
emotions multi-label 256 - 184 0.00% 5.19 - 16 0:03:44
emotions multi-label 256 1.02 204 0.49% 5.16 2.00 36 0:03:58
emotions multi-label 256 1.04 183 1.09% 5.30 2.00 36 0:04:02
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emotions multi-label 256 1.08 173 2.89% 5.40 2.20 16 0:04:01
emotions multi-label 256 1.16 214 2.80% 5.52 2.00 31 0:04:29
emotions multi-label 256 1.32 253 11.07% 5.86 2.14 11 0:04:55
emotions multi-label 512 - 178 0.00% 5.43 - 21 0:03:55
emotions multi-label 512 1.02 183 1.09% 5.38 3.00 16 0:04:08
emotions multi-label 512 1.04 179 0.00% 5.50 - 16 0:03:54
emotions multi-label 512 1.08 187 1.07% 5.60 2.00 21 0:04:15
emotions multi-label 512 1.16 210 1.90% 5.86 2.25 16 0:04:42
emotions multi-label 512 1.32 234 6.41% 6.13 2.07 11 0:05:32

Table 19.: Model characteristics of multi-label models learned from the data set yeast
parameters model characteristics runtime

data set head ref. m l #rules %MLHR Avg.Cond. Avg.MLH opt. #rules runtime
yeast multi-label 0 - 6787 0.00% 1.85 - 6846 12:07:48
yeast multi-label 0 1.02 3594 90.51% 1.88 2.00 3616 6:36:27
yeast multi-label 0 1.04 3594 90.51% 1.88 2.00 3616 6:49:51
yeast multi-label 0 1.08 3592 90.53% 1.88 2.00 3616 6:48:47
yeast multi-label 0 1.16 3587 90.83% 1.88 2.00 3611 7:03:28
yeast multi-label 0 1.32 3585 90.74% 1.88 2.00 3601 6:25:29
yeast multi-label 1 - 4669 0.21% 2.55 3.00 4691 8:35:29
yeast multi-label 1 1.02 3481 34.50% 2.52 2.00 3526 6:46:08
yeast multi-label 1 1.04 3445 35.62% 2.52 2.00 3441 6:19:50
yeast multi-label 1 1.08 3392 38.21% 2.55 2.00 3441 6:34:05
yeast multi-label 1 1.16 3326 40.80% 2.59 2.01 3301 6:19:37
yeast multi-label 1 1.32 3152 50.38% 2.68 2.02 3106 6:01:34
yeast multi-label 2 - 4448 0.65% 2.66 3.00 4476 8:20:05
yeast multi-label 2 1.02 3455 29.49% 2.59 2.00 3421 6:20:47
yeast multi-label 2 1.04 3431 29.87% 2.59 2.00 3456 6:20:52
yeast multi-label 2 1.08 3390 31.12% 2.62 2.00 3346 6:23:15
yeast multi-label 2 1.16 3327 33.18% 2.67 2.01 3306 6:09:05
yeast multi-label 2 1.32 3185 38.24% 2.75 2.11 3151 6:03:53
yeast multi-label 4 - 4196 0.02% 2.78 3.00 4116 8:00:21
yeast multi-label 4 1.02 3207 28.16% 2.73 2.00 3231 5:50:37
yeast multi-label 4 1.04 3214 27.85% 2.73 2.00 3211 6:14:55
yeast multi-label 4 1.08 3152 29.38% 2.80 2.01 3126 5:49:34
yeast multi-label 4 1.16 3080 31.36% 2.87 2.07 3041 5:51:26
yeast multi-label 4 1.32 2879 40.36% 3.03 2.34 2866 5:24:03
yeast multi-label 8 - 3735 0.05% 3.01 3.00 3736 6:53:10
yeast multi-label 8 1.02 2830 28.41% 2.94 2.00 2811 5:33:41
yeast multi-label 8 1.04 2848 28.86% 2.96 2.00 2851 5:16:21
yeast multi-label 8 1.08 2770 29.03% 3.04 2.02 2816 5:23:24
yeast multi-label 8 1.16 2743 31.50% 3.17 2.15 2776 5:17:26
yeast multi-label 8 1.32 2688 37.39% 3.35 2.32 2716 5:12:02
yeast multi-label 16 - 3224 0.00% 3.32 - 3256 6:01:09
yeast multi-label 16 1.02 2468 26.18% 3.29 2.00 2516 4:41:32
yeast multi-label 16 1.04 2423 27.28% 3.35 2.01 2461 4:33:55
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yeast multi-label 16 1.08 2426 26.88% 3.43 2.07 2456 4:34:05
yeast multi-label 16 1.16 2417 28.88% 3.58 2.15 2431 4:32:22
yeast multi-label 16 1.32 2526 31.59% 3.75 2.30 2556 4:50:54
yeast multi-label 32 - 2745 0.00% 3.77 - 2791 5:12:48
yeast multi-label 32 1.02 2072 23.50% 3.70 2.00 6 4:09:44
yeast multi-label 32 1.04 2083 23.62% 3.78 2.02 2086 4:00:49
yeast multi-label 32 1.08 2169 22.96% 3.85 2.06 2171 4:09:18
yeast multi-label 32 1.16 2225 23.91% 4.02 2.08 2231 4:23:26
yeast multi-label 32 1.32 2313 29.10% 4.30 2.33 2336 4:32:40
yeast multi-label 64 - 2371 0.00% 4.27 - 2326 4:45:58
yeast multi-label 64 1.02 1823 19.58% 4.26 2.03 1876 3:33:46
yeast multi-label 64 1.04 1833 19.15% 4.26 2.01 1856 3:46:31
yeast multi-label 64 1.08 1929 20.11% 4.43 2.04 1946 3:42:22
yeast multi-label 64 1.16 2051 20.04% 4.59 2.06 1996 4:03:44
yeast multi-label 64 1.32 2191 27.80% 4.93 2.19 2171 4:18:49
yeast multi-label 128 - 2050 0.00% 4.82 - 1971 4:15:59
yeast multi-label 128 1.02 1605 17.69% 4.82 2.00 1616 3:15:42
yeast multi-label 128 1.04 1597 17.09% 4.92 2.00 1611 3:30:18
yeast multi-label 128 1.08 1725 17.10% 5.06 2.00 1731 3:32:28
yeast multi-label 128 1.16 1877 18.86% 5.26 2.05 1871 3:59:59
yeast multi-label 128 1.32 2031 25.85% 5.65 2.10 2101 4:21:23
yeast multi-label 256 - 1883 0.00% 5.53 - 1786 4:10:09
yeast multi-label 256 1.02 1453 15.76% 5.48 2.00 1506 3:13:10
yeast multi-label 256 1.04 1528 15.77% 5.61 2.02 1521 3:24:02
yeast multi-label 256 1.08 1627 18.25% 5.77 2.00 1621 3:35:47
yeast multi-label 256 1.16 1701 18.34% 6.04 2.04 1766 3:55:25
yeast multi-label 256 1.32 1988 24.85% 6.52 2.13 1921 4:34:22
yeast multi-label 512 - 1683 0.00% 6.15 - 1666 3:58:35
yeast multi-label 512 1.02 1418 14.67% 6.28 2.00 1396 3:24:46
yeast multi-label 512 1.04 1444 15.37% 6.33 2.00 1486 3:38:48
yeast multi-label 512 1.08 1569 14.91% 6.53 2.02 1571 3:54:31
yeast multi-label 512 1.16 1690 19.35% 6.88 2.06 1726 4:20:30
yeast multi-label 512 1.32 1926 25.55% 7.18 2.11 1966 4:51:28

Table 20.: Model characteristics of multi-label models learned from the data set medical
parameters model characteristics runtime

data set head ref. m l #rules %MLHR Avg.Cond. Avg.MLH opt. #rules runtime
medical multi-label 0 - 1562 0.00% 1.88 - 1631 0:04:47
medical multi-label 0 1.02 1400 24.21% 1.96 2.00 1441 0:04:10
medical multi-label 0 1.04 1400 24.21% 1.96 2.00 1441 0:04:11
medical multi-label 0 1.08 1401 24.20% 1.97 2.00 1441 0:04:09
medical multi-label 0 1.16 1401 24.27% 1.97 2.00 1441 0:04:16
medical multi-label 0 1.32 1401 24.27% 1.97 2.00 1441 0:04:11
medical multi-label 1 - 1129 0.00% 2.72 - 1201 0:03:47
medical multi-label 1 1.02 1111 2.52% 2.73 2.00 1151 0:03:44
medical multi-label 1 1.04 1109 2.71% 2.74 2.00 1171 0:03:39
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medical multi-label 1 1.08 1108 3.61% 2.74 2.00 1171 0:03:41
medical multi-label 1 1.16 1107 5.51% 2.75 2.00 1161 0:03:43
medical multi-label 1 1.32 1119 8.49% 2.76 2.01 1161 0:03:45
medical multi-label 2 - 969 0.00% 2.93 - 1061 0:03:26
medical multi-label 2 1.02 949 2.85% 2.93 2.00 1041 0:03:17
medical multi-label 2 1.04 949 2.85% 2.94 2.00 1036 0:03:20
medical multi-label 2 1.08 952 2.73% 2.95 2.00 1041 0:03:20
medical multi-label 2 1.16 950 4.00% 2.94 2.00 1031 0:03:23
medical multi-label 2 1.32 946 7.08% 2.98 2.01 1021 0:03:21
medical multi-label 4 - 827 0.00% 3.16 - 896 0:02:57
medical multi-label 4 1.02 814 2.46% 3.16 2.00 891 0:02:57
medical multi-label 4 1.04 815 2.33% 3.16 2.00 891 0:02:54
medical multi-label 4 1.08 817 2.08% 3.17 2.00 891 0:02:59
medical multi-label 4 1.16 826 2.42% 3.18 2.00 896 0:02:54
medical multi-label 4 1.32 823 13.24% 3.25 3.85 871 0:02:56
medical multi-label 8 - 719 0.00% 3.46 - 746 0:02:37
medical multi-label 8 1.02 714 1.54% 3.46 2.00 766 0:02:32
medical multi-label 8 1.04 714 1.54% 3.46 2.00 766 0:02:35
medical multi-label 8 1.08 717 1.39% 3.46 2.00 761 0:02:33
medical multi-label 8 1.16 705 8.09% 3.55 3.37 746 0:02:34
medical multi-label 8 1.32 708 12.85% 3.60 4.42 241 0:02:35
medical multi-label 16 - 615 0.00% 3.77 - 86 0:02:16
medical multi-label 16 1.02 619 1.78% 3.78 2.00 106 0:02:13
medical multi-label 16 1.04 619 1.45% 3.79 2.00 106 0:02:14
medical multi-label 16 1.08 617 6.32% 3.81 3.33 106 0:02:14
medical multi-label 16 1.16 618 9.71% 3.88 3.95 106 0:02:18
medical multi-label 16 1.32 614 14.98% 3.96 4.27 91 0:02:18
medical multi-label 32 - 532 0.00% 4.12 - 151 0:02:04
medical multi-label 32 1.02 543 1.10% 4.14 2.00 156 0:02:03
medical multi-label 32 1.04 541 4.25% 4.15 3.22 156 0:02:02
medical multi-label 32 1.08 543 6.81% 4.19 3.81 136 0:02:05
medical multi-label 32 1.16 550 8.36% 4.30 4.07 136 0:02:06
medical multi-label 32 1.32 544 13.97% 4.41 4.34 81 0:02:09
medical multi-label 64 - 496 0.00% 4.38 - 86 0:01:54
medical multi-label 64 1.02 491 3.87% 4.48 2.53 106 0:01:56
medical multi-label 64 1.04 494 7.29% 4.46 3.64 106 0:01:58
medical multi-label 64 1.08 501 8.18% 4.53 3.63 86 0:02:02
medical multi-label 64 1.16 513 10.72% 4.61 4.24 131 0:02:02
medical multi-label 64 1.32 504 16.27% 4.89 4.11 141 0:02:09
medical multi-label 128 - 481 0.00% 4.53 - 121 0:01:58
medical multi-label 128 1.02 476 6.09% 4.68 3.21 121 0:01:56
medical multi-label 128 1.04 494 7.49% 4.72 3.54 121 0:02:00
medical multi-label 128 1.08 496 10.08% 4.83 3.84 91 0:02:07
medical multi-label 128 1.16 497 12.27% 5.01 3.82 41 0:02:10
medical multi-label 128 1.32 504 17.66% 5.31 4.04 41 0:02:15
medical multi-label 256 - 463 0.00% 4.65 - 56 0:01:56
medical multi-label 256 1.02 465 6.45% 4.94 3.37 6 0:02:04
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medical multi-label 256 1.04 476 6.93% 4.99 3.24 6 0:02:05
medical multi-label 256 1.08 474 9.49% 5.19 3.67 41 0:02:06
medical multi-label 256 1.16 496 15.52% 5.32 3.84 41 0:02:19
medical multi-label 256 1.32 491 20.16% 5.69 4.09 6 0:02:22
medical multi-label 512 - 464 0.00% 4.77 - 6 0:01:59
medical multi-label 512 1.02 461 5.42% 5.22 3.76 6 0:02:09
medical multi-label 512 1.04 474 5.91% 5.25 3.68 6 0:02:16
medical multi-label 512 1.08 484 10.12% 5.59 3.67 6 0:02:18
medical multi-label 512 1.16 512 14.06% 5.68 4.03 6 0:02:25
medical multi-label 512 1.32 520 18.85% 6.07 4.27 6 0:02:28

Table 21.: Model characteristics of multi-label models learned from the data set scene
parameters model characteristics runtime

data set head ref. m l #rules %MLHR Avg.Cond. Avg.MLH opt. #rules runtime
scene multi-label 0 - 2037 0.00% 1.97 - 656 7:51:43
scene multi-label 0 1.02 1903 8.25% 1.97 2.00 6 7:27:49
scene multi-label 0 1.04 1902 8.25% 1.98 2.00 6 7:12:52
scene multi-label 0 1.08 1909 8.22% 1.97 2.00 6 7:37:39
scene multi-label 0 1.16 1920 8.18% 1.98 2.00 6 7:19:41
scene multi-label 0 1.32 1933 8.12% 1.98 2.00 6 7:44:53
scene multi-label 1 - 1177 0.00% 2.77 - 361 4:34:38
scene multi-label 1 1.02 1176 0.09% 2.77 2.00 361 4:20:25
scene multi-label 1 1.04 1173 0.17% 2.76 2.00 361 4:43:11
scene multi-label 1 1.08 1186 0.17% 2.76 2.00 361 4:27:54
scene multi-label 1 1.16 1216 0.66% 2.75 2.00 16 4:58:06
scene multi-label 1 1.32 1202 2.66% 2.73 2.00 6 4:49:34
scene multi-label 2 - 1042 0.00% 2.93 - 11 3:49:57
scene multi-label 2 1.02 1042 0.00% 2.93 - 11 4:03:06
scene multi-label 2 1.04 1041 0.00% 2.93 - 11 4:08:03
scene multi-label 2 1.08 1047 0.10% 2.95 2.00 11 3:59:51
scene multi-label 2 1.16 1059 0.28% 2.98 2.00 11 4:24:05
scene multi-label 2 1.32 1083 1.02% 3.00 2.00 11 4:12:58
scene multi-label 4 - 893 0.00% 3.16 - 6 3:18:50
scene multi-label 4 1.02 882 0.23% 3.16 2.00 6 3:18:45
scene multi-label 4 1.04 876 0.23% 3.17 2.00 6 3:33:03
scene multi-label 4 1.08 895 0.22% 3.17 2.00 6 3:31:08
scene multi-label 4 1.16 897 0.11% 3.22 2.00 6 3:25:11
scene multi-label 4 1.32 898 3.67% 3.29 2.73 6 3:47:30
scene multi-label 8 - 734 0.00% 3.32 - 16 2:49:43
scene multi-label 8 1.02 733 0.00% 3.32 - 16 2:43:58
scene multi-label 8 1.04 725 0.14% 3.38 2.00 16 2:42:53
scene multi-label 8 1.08 725 0.14% 3.43 2.00 16 2:52:45
scene multi-label 8 1.16 717 0.70% 3.49 2.80 16 2:56:47
scene multi-label 8 1.32 752 6.52% 3.52 2.96 16 3:06:22
scene multi-label 16 - 573 0.00% 3.58 - 6 2:10:29
scene multi-label 16 1.02 574 0.17% 3.59 2.00 6 2:17:19
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scene multi-label 16 1.04 562 0.00% 3.64 - 6 2:17:21
scene multi-label 16 1.08 564 0.53% 3.72 2.00 6 2:14:11
scene multi-label 16 1.16 594 3.70% 3.81 3.00 6 2:22:56
scene multi-label 16 1.32 620 6.94% 3.94 2.98 6 2:40:54
scene multi-label 32 - 464 0.00% 4.07 - 6 1:46:15
scene multi-label 32 1.02 465 0.00% 4.07 - 6 1:52:15
scene multi-label 32 1.04 452 0.00% 4.12 - 6 1:46:56
scene multi-label 32 1.08 429 1.17% 4.20 3.00 6 1:52:35
scene multi-label 32 1.16 487 3.29% 4.31 3.00 6 2:05:11
scene multi-label 32 1.32 554 4.69% 4.47 3.00 6 2:11:44
scene multi-label 64 - 341 0.00% 4.49 - 6 1:30:00
scene multi-label 64 1.02 356 0.28% 4.53 2.00 6 1:33:13
scene multi-label 64 1.04 375 0.80% 4.54 2.33 6 1:31:40
scene multi-label 64 1.08 389 2.06% 4.62 2.88 6 1:41:52
scene multi-label 64 1.16 407 2.70% 4.83 3.00 6 1:50:19
scene multi-label 64 1.32 492 3.05% 5.15 3.00 6 2:13:06
scene multi-label 128 - 290 0.00% 5.04 - 6 1:15:13
scene multi-label 128 1.02 300 0.33% 5.09 2.00 6 1:19:18
scene multi-label 128 1.04 308 0.65% 5.18 2.50 6 1:21:19
scene multi-label 128 1.08 333 0.90% 5.24 2.67 6 1:31:57
scene multi-label 128 1.16 357 2.24% 5.50 2.88 6 1:43:39
scene multi-label 128 1.32 414 3.86% 5.83 3.00 6 2:12:54
scene multi-label 256 - 257 0.00% 5.52 - 6 1:13:45
scene multi-label 256 1.02 264 0.38% 5.57 3.00 6 1:16:32
scene multi-label 256 1.04 285 0.00% 5.60 - 6 1:23:22
scene multi-label 256 1.08 310 0.32% 5.93 3.00 6 1:34:36
scene multi-label 256 1.16 331 1.21% 6.18 3.00 6 1:41:55
scene multi-label 256 1.32 421 4.51% 6.62 2.79 6 2:17:52
scene multi-label 512 - 236 0.00% 5.94 - 6 1:16:37
scene multi-label 512 1.02 244 0.00% 5.90 - 6 1:20:01
scene multi-label 512 1.04 256 0.39% 6.29 3.00 6 1:29:06
scene multi-label 512 1.08 302 0.66% 6.47 2.50 6 1:36:32
scene multi-label 512 1.16 362 0.28% 6.78 3.00 6 1:58:57
scene multi-label 512 1.32 441 3.85% 7.29 2.82 6 2:29:19

Table 22.: Model characteristics of single-label models learned from the data set birds
parameters model characteristics runtime

data set head ref. m #rules Avg.Cond. runtime
birds single-label 0 518 1.53 0:06:30
birds single-label 1 446 2.06 0:05:55
birds single-label 2 421 2.17 0:05:37
birds single-label 4 393 2.35 0:05:15
birds single-label 8 355 2.54 0:04:51
birds single-label 16 324 2.77 0:04:27
birds single-label 32 308 3.01 0:04:14
birds single-label 64 288 3.39 0:04:03
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birds single-label 128 249 3.89 0:03:58
birds single-label 256 247 4.47 0:04:04
birds single-label 512 237 4.67 0:04:12

Table 23.: Model characteristics of single-label models learned from the data set emotions
parameters model characteristics runtime

data set head ref. m #rules Avg.Cond. runtime
emotions single-label 0 841 1.74 0:03:28
emotions single-label 1 509 2.58 0:02:13
emotions single-label 2 439 2.73 0:01:58
emotions single-label 4 399 2.88 0:01:44
emotions single-label 8 334 3.12 0:01:29
emotions single-label 16 256 3.53 0:01:19
emotions single-label 32 240 3.95 0:01:14
emotions single-label 64 195 4.37 0:01:08
emotions single-label 128 218 4.86 0:01:09
emotions single-label 256 184 5.19 0:01:11
emotions single-label 512 178 5.43 0:01:13

Table 24.: Model characteristics of single-label models learned from the data set yeast
parameters model characteristics runtime

data set head ref. m #rules Avg.Cond. runtime
yeast single-label 0 6787 1.85 3:12:55
yeast single-label 1 4689 2.55 2:19:52
yeast single-label 2 4506 2.65 2:13:54
yeast single-label 4 4198 2.78 2:04:54
yeast single-label 8 3739 3.01 1:52:08
yeast single-label 16 3224 3.32 1:37:50
yeast single-label 32 2745 3.77 1:24:19
yeast single-label 64 2371 4.27 1:12:55
yeast single-label 128 2050 4.82 1:05:49
yeast single-label 256 1883 5.53 1:03:31
yeast single-label 512 1683 6.15 1:03:46

Table 25.: Model characteristics of single-label models learned from the data set medical
parameters model characteristics runtime

data set head ref. m #rules Avg.Cond. runtime
medical single-label 0 1562 1.88 0:01:46
medical single-label 1 1129 2.72 0:01:25
medical single-label 2 969 2.93 0:01:17
medical single-label 4 827 3.16 0:01:07
medical single-label 8 719 3.46 0:00:59
medical single-label 16 615 3.77 0:00:51
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medical single-label 32 532 4.12 0:00:47
medical single-label 64 496 4.38 0:00:44
medical single-label 128 481 4.53 0:00:43
medical single-label 256 463 4.65 0:00:44
medical single-label 512 464 4.77 0:00:44

Table 26.: Model characteristics of single-label models learned from the data set scene
parameters model characteristics runtime

data set head ref. m #rules Avg.Cond. runtime
scene single-label 0 2037 1.97 2:20:03
scene single-label 1 1177 2.77 1:23:28
scene single-label 2 1042 2.93 1:13:04
scene single-label 4 893 3.16 1:02:37
scene single-label 8 734 3.32 0:51:36
scene single-label 16 573 3.58 0:40:57
scene single-label 32 464 4.07 0:33:21
scene single-label 64 341 4.49 0:28:16
scene single-label 128 290 5.04 0:23:59
scene single-label 256 257 5.52 0:23:16
scene single-label 512 236 5.94 0:23:06
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