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Abstract

The complexity of reinforcement learning problems grows exponentially with the
size of the state space, which renders realistic cases unsolvable and underlines the
need for guidance. This thesis studies a hybrid agent architecture, in which the top-
level module reuses temporal knowledge in the form of plans that it extracts from a
concurrently executing low-level reinforcement learner.The first contribution of this
work are significant improvements of the original model and implementation of the
agent architecture, resulting in a more effective knowledge extraction and reuse. The
second contribution is an extensive exploration of the synergy effects that take place
between both layers of the architecture. It is shown that thecombination of state
abstraction and the reuse of plans as temporal abstraction can lead to a significantly
shorter learning time of a reinforcement learning agent. Likewise, the number of
decisions to be made by the agent is reduced because a plan is adefinite commitment
to a course of actions that does not require intermediary reasoning. In addition, we
demonstrate that the architecture enables the integrationof plans as prior knowledge
through a clear and convenient interface. Thus, partial andapproximate solutions to
the problem can be easily specified to significantly decreaselearning time even further.
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1 Introduction

Recent advances in information technology are impressive.Vehicles are able to cover
long distances without the intervention of any driver. House appliances adapt to the
habits of their residents, and computer programs defeat chess grand masters. These
applications have in common that the problems they tackle are highly complex such
that reasonable solutions cannot be defined by deterministic instructions. For instance,
developers might have limited information about the dynamics of potential application
areas or about the influence of other active entities. Instead, such applications are
capable of acting autonomously to a certain degree. Thus, they are able to adapt to
their environment without relying on exhaustive problem specifications.

Constructing systems that exhibit some kind of adaptive andautonomous behavior
is a research goal ofartificial intelligence (Russell and Norvig, 2003). The main
notion in this area is that of anagent. According to Wooldridge and Jennings (1995),
this term denotes any software program that follows its own interests autonomously by
acting on its environment, reacting to external perceptions and interacting with other
agents. Such an agent is calledsituatedbecause it directly affects its environment
and is affected by this likewise. Russell and Norvig (2003) consider an agent to act
rationally or intelligently if it behaves in such a way to maximize a given performance
measure given its currently available knowledge. This definition obviously makes
sense for the development of agents that strive to attain goals particularly provided by
their human masters. Whether this can cover the notion of intelligence in its entirety,
however, is not clear. Other researchers might only deem agents to be intelligent if
they exhibit more human-like attributes such as emotions oracting irrationally once
in a while (Wooldridge and Jennings, 1995).

The concrete development of a software agent is based on a specific agent architec-
ture, which in turn emerged from a formal agent theory.Agent theoriesallow us to
specify the properties of agents and to reason about their interrelations. They arise
not only from research in artificial intelligence but also from work in psychology,
philosophy and cognitive science. Typically, agent theorists strive to identify charac-
teristics of human behavior and to map them onto a set of clearly graspable concepts.

7



Introduction 8

A particular agent architectureprovides a methodology for building agents that are
compatible with the underlying agent theory (Wooldridge and Jennings, 1995).

Agent architectures generally fall into three categories:deliberative, reactive, and
hybrid architectures (Wooldridge and Jennings, 1995).Deliberative architectures
rely on the assumption that the problems in question can be modeled as symbolic
systems and that logical reasoning on these gives rise to intelligent behavior or prob-
lem solving (Newell and Simon, 1976). A major product of the symbolic artificial
intelligence community are algorithms for automated planning. Planning1 is the
process of finding a path of actions to apply in a certain situation in order to reach
a situation in which a certain desirable condition holds. STRIPS was one of the early
planning systems, which is well known and had a significant impact on subsequent
systems (Fikes and Nilsson, 1971). However, it has been recognized that symbolic
reasoning is problematic in time-critical applications oragents whose computational
resources are restricted, so calledresource-boundedagents (Chapman, 1987; Brooks,
1986; Bratman et al., 1988). Planning is basically a search in the space of options
available to the agent and the states the environment can take. Its complexity thus
grows exponentially with the size of both of these sets. Apart from that, it is still not
clear how to represent the real world in a symbolic form effectively (Wooldridge and
Jennings, 1995).

This has led to researchers arguing for so calledreactive architectures, which re-
frain from relying on any complex symbolic reasoning. Rodney Brooks has been a
foremost supporter of this idea. Hissubsumption architecture, which solely relies
on a simple hierarchical behavior control, has been deployed successfully in various
robots (Brooks, 1986). The major advantages of this approach are its simplicity and
thus effectiveness. It is questionable, though, whether this kind of architecture can
host any higher-level intelligence, which, for example, also reasons about the agent’s
long-term goals.

Hybrid architectureshave been proposed by researchers who seek to combine the
advantages of both worlds. They usually apply a mixture of different knowledge rep-
resentations and reasoning techniques. A family of such agent architectures, including
for example PRS (Georgeff and Lansky, 1987) and IRMA (Pollack, 1992), are based
on theBelief-Desire-Intention(BDI) theory of agency, which was initially defined by
Bratman et al. (1988). In this framework, reasoning is governed by the beliefs an agent
has about its environment, its goals or desires and the intentions it has itself currently
committed to. Plans for achieving certain intentions are not calculated on demand at

1For a detailed discussion of planning techniques refer to Ghallab et al. (2004).
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runtime but are rather specified at development time as approximate recipes. Featuring
these high-level concepts, reasoning allows for more complex decision-making and is
not only restricted to primitive actions. Because such systems refrain from classical
planning and because reasoning is constrained to behavior compatible with the agent’s
current intentions, they are able to sustain a certain levelof reactivity. This has made
them popular agent architectures. PRS, for example, was successfully deployed in the
failure-handling module of the NASA space-shuttle (Ingrand et al., 1992).

As claimed previously, it is rarely possible to specify the behavior of an agent
completely in terms of a program because of the complexity its tasks might exhibit.
So far, however, we have only identified planning as a means for agents to behave
autonomously to a certain degree. The second major technique for equipping agents
with autonomy ismachine learning. An agent or a computer program can be said to
learn if its performance with regard to a certain performance measure improves with
its experience (Mitchell, 1997). Reinforcement learning has been the primary method
for designing situated, learning agents (Sutton and Barto,1998). Major motivations
for this are that it does not require any prior knowledge about the environment and that
it is inherently anonline learningtechnique. The latter allows the agent to augment its
knowledge after its deployment. An agent employing reinforcement learning simply
learns by receiving feedback for the actions it takes in its environment.

1.1 Motivation

There has been an impressive amount of research in supporting planning with machine
learning techniques, with a major focus on speedup of planning systems (Zimmerman
and Kambhampati, 2003). However, limited research has investigated the possibilities
for integrating the BDI theory of agency with machine learning techniques, despite
its popularity as an agent theory and its focus on reasoning about plans (e.g. Guerra-
Hernández et al. (2004) and Olivia et al. (1999)). Conventional BDI architectures still
require plans to be specified by developers.

Recently, Karim et al. (2006a) introduced thePlan-Generation-Subsystem(PGS) as
a possibility for developing learning BDI agents. PGS is the top-level of a hybrid agent
architecture, which records courses of actions performed by a bottom-level reinforce-
ment learner. These are stored as reusable plans. It is an online learning approach
and hence suited for situated agents. Allowing plans to be acquired during runtime
releases developers from having to define suitable plans a priori. Furthermore, the
agent’s plan base adapts to changes in its environment. Apart from obtaining knowl-
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edge automatically within the BDI framework, there are other obvious advantages
of extracting plans from low-level behavior. Shifting knowledge from a fine-grained
description to a temporally more abstract level yields a compression of knowledge on
the one hand and makes it more accessible for inspection by humans on the other hand.
It is also reasonable to expect a performance improvement when executing recorded
plans. In fact, the knowledge about when to apply a certain plan comprises more
information than the knowledge when to apply a single action.

Previous experiments showed useful plans being acquired (Karim et al., 2006a,b,
2008). Yet, there was a substantial bias towards reusing single step plans, which
obviously hardly yields any improvement over employing thereinforcement learner
alone. Apart from that, results were not entirely as expected. In addition, general plan
reuse was low because plans were only reused in the very situation their recording had
originally started. A state abstraction was not applied. This suggests the possibility for
further analysis of previous results and improving both themodel and implementation.
It is also worthwhile to study PGSas a possibility for improving the performance of the
underlying reinforcement learner. It has long been noticedthat deploying a reinforce-
ment learner can be problematic in complex domains with large state spaces, which
require the agent to perform excessive, initial exploration (Whitehead, 1991). Thus,
speeding up the initial learning phase is a major task for research in reinforcement
learning.

1.2 Problem statement and research questions

The first part of this work is to identify shortcomings of the current PGS architecture
and to relativize previous studies. This naturally leads toinvesting effort in improving
the model and its implementation. In that, this work partly is an extension of what
has been done previously. The architecture is simply conceived as a mechanism for
extracting knowledge from a low-level learning module and shifting it to a higher
level.

Having improved the plan acquisition process, it is then reasonable to ask how the
plan execution process can contribute to the overall performance of the underlying
learning module. This turns the original view upside down. Plans are no longer only
an abstraction from low-level knowledge but they also provide a guidance for the low-
level module. They naturally comprise more information then do primitive actions
and, in that, their careful reuse can be expected to have a positive influence on the
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overall performance. Studying these effects can leverage our understanding of the
influence of temporal abstraction in learning and planning in intelligent agents.

This raises a number of questions to be studied in this thesis:

Under what conditions can PGS successfully acquire effective plans?A major is-
sue is to clearly identify the requirements of deploying PGS and to assess them
against the background of current research.

How can the reuse of plans, and in particular longer plans, befacilitated? Both
general plan reuse as well as the average length of reused plans were low in
previous experiments (Karim, 2009). To justify any discussion about PGS at all,
both have to become significantly large enough.

What is the impact of using plans on the overall performance?As mentioned pre-
viously, plans do represent more information than primitive actions. It might be
valuable to exploit this property by a sensible plan reuse inorder to improve the
overall performance of the agent.

How can prior knowledge be incorporated into PGS? Integrating prior knowledge
about the problem or environment can substantially improvethe time that an
agent’s learning module requires to converge to a decent behavior policy. A
plan represents the knowledge about a probably successful order of primitive
actions. It is worthwhile to study the possibility of integrating such knowledge
into an agent.

We discuss the first question by reviewing PGS in the context of related research.
The second question is addressed by improvements of the model and its implementa-
tion. The remaining questions are discussed against the background of experimental
evaluation. The second and the fourth question require implementation work to be
done, which partly is a change to the original model. Evaluating an agent architecture
in a single domain only does not have any value. Research results in this case need to
be validated in different domains to allow any conclusions to be drawn. Experiments
are conducted within thepursuitand thetaxi domains, which are both grid worlds. In
the former, four predators seek to catch a prey by surrounding it. In the latter, a taxi
agent is supposed to pickup a passenger at a particular position and to bring him or
her to a particular destination.



Introduction 12

1.3 Thesis outline

The thesis follows two main themes: temporal abstraction and prior knowledge in
learning agents. We first discuss both topics in the context of reinforcement learning
and hybrid agent architectures, which had a major impact on the development of PGS

(Chapter 2). In Chapter 3, we bring together these two concepts when introducing
the PGS agent architecture. In particular, we discuss the relationship between PGS

and other approaches for exploiting temporal abstraction and prior knowledge in re-
inforcement learning. Based on that, we identify shortcomings of the original PGS

model and develop a number of modifications. These extensions are then touched
upon during the description of the system architecture in Chapter 4. However, the
concrete implementation is not a major part of this work and its description hence
kept rather brief. In chapter 5, we report results of extensive empirical analysis of
the extended PGS model. This does not only clarify the restrictions of PGS but also
supports the general discussion about temporal abstraction and prior knowledge. We
conclude the thesis with a summary of the work conducted and an outlook on future
work in Chapter 6.



2 Literature survey

PGS as it is adopted in this thesis is mainly driven or inspired bytwo concepts: re-
inforcement learning and hybrid agent architectures. The overall architecture derives
from other hybrid architectures that extract abstract knowledge from an underlying
low-level learning module. The low-level module in PGS is a reinforcement learner,
which basically learns which action to carry out in a specificsituation. As this also
holds for some related agent architectures, reinforcementlearning is introduced first
in Section 2.1 before hybrid agent architectures are discussed in Section 2.2. This way,
we will identify where PGS originally comes from as well as how it relates to other
techniques for improving reinforcement learners.

2.1 Reinforcement learning

In supervised learning, knowledge is compressed or obtained by identifying patterns
in labeled input data. Each example consists of a feature vector and an associated
output value or class that the example belongs to. The latterhave to be provided by an
expert. A learning algorithm is supposed to produce generalized rules from this data
which predict the output value or class of new examples basedon their features. The
model is builtoffline, meaning that the learning algorithm requires a sufficiently large
example set before it can generate a reasonably accurate model (Mitchell, 1997).

Situated agents as they are of interest in this work, on the contrary, need to adapt
to their environment from the very first moment of their life cycle in order to avoid
harmful mistakes. They surely cannot wait for enough data being acquired to learn a
reasonable behavior. Agents might act for a long time in a particular part of their
environment before moving on to another one. In that case, a generally optimal
behavior can hardly be obtained in the first place. Likewise,the utility of an action
might not become obvious immediately. It might turn out later that a particular action
moved the agent onto a path that becomes useful in the long run. It is, however, a
general requirement for standard supervised learning algorithms that each example

13



Literature survey 14

Agent

Environment

s

st+1

a
rt

t

t

rt+1

Figure 2.1: The cycle of sensing the environment, acting andreceiving a reward in
reinforcement learning agents. The agent receives situation st and reward
rt at timet and answers with actionat , which leads to a new situationst+1

and rewardrt+1.

can be evaluated instantly. Hence, they are not particularly suitable for behavior
learning in situated agents.

Reinforcement learning, in contrast, is an online learning approach. It provides
a definition for certain types of problems and a general framework for various algo-
rithms. The agent is assumed to exist within its environment, frequently sensing its
surroundings and taking actions to proceed towards its goals. Each action changes
thestateof the agent’s environment and results in the agent receiving areward, repre-
senting the utility of this state transition. The continuous cycle of sensing, acting
and receiving a reward is illustrated in Figure 2.1. While taking an action is the
responsibility of the agent, the information obtained fromsensing and the reward
received are determined by the environment. Even though theagent might have some
information about how the reward is produced, it cannot alter the reward’s definition.
Reinforcement learning algorithms utilize the agent’s reward history to estimate the
utility of each state, which, in turn, might very well dependon the utility of states that
can be reached from the state in question. The ultimate goal of such an agent is to
maximize its cumulative long term reward. Therefore, an agent designer can bias the
agent towards a particular, goal-directed behavior only byspecifying rewards, states
and actions appropriately. In particular, the correct utility of actions does not need to
be specified explicitly, which is an inherent advantage oversupervised learning in the
case of situated agents (Sutton and Barto, 1998).
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2.1.1 The reinforcement learning problem

Much work in reinforcement learning is based on the assumption that the agent’s
environment has theMarkov property. This means that the change of the environment
and the reward for taking a particular action only depend on the action and the environ-
ment state in which it was performed. In particular, the environment’s response does
not depend on the history of states, actions and rewards. More formally, the following
is assumed to hold for all state transitions and histories:

Pr{st+1 = s,rt+1 = r |st ,at}= Pr{st+1 = s,rt+1 = r |st ,at ,rt ,st−1,at−1, . . . ,r1,s0,a0} ,

with st denoting the state at timet, at the action taken at timet andrt+1 the reward
received as a response to this action. An important observation is that in such an
environment all future states and expected rewards can be predicted based on the
current state alone. Hence, making a decision in order to maximize the sum of future
rewards can be substantially facilitated. It requires, however, that the state description
provides a suitable summary of all the relevant informationfrom the history (Sutton
and Barto, 1998).

A reinforcement learning problem that fulfills the Markov property can be modeled
as aMarkov Decision Process(MDP), which is a tupleM = (S,A,T,γ,R) (definition
based on Ng et al. (1999)).S denotes the set of possible environment states and
A the set of actions available to the agent.T = {Psa(·)|s∈ S,a ∈ A} is the set of
probabilitiesPsa(s′) for transitioning to states′ when executing actiona in states.
γ ∈ (0,1] specifies a discount factor, whose function will become obvious later. R
describes the reward distribution, which is usually assumed to be deterministic. In
that case, the reward function is defined asR : S×A 7→R. If the agent executes action
a in states, the environment yields the rewardR(s,a). In this work, we will make the
simplifying assumption that the set of statesS is finite, which leads to afinite Markov
Decision Process, respectively.

A policy π : S 7→ A for a given MDP denotes that actiona is taken in states
with probability π(s,a). A reinforcement learning agent seeks to learn a policy that
maximizes its future cumulative reward when following thispolicy. The expected
cumulative future reward orexpected return Eπ for taking actiona in states and
following policy π thereafter is described in terms of theaction-value function:

Qπ(s,a) = Eπ

{

∞

∑
k=0

γkrt+k+1 |st = s,at = a

}

. (2.1)
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The discount factorγ determines the influence that later expected rewards have onthe
overall expected return. Theoptimal policy, whose expected return is larger or equal
to that of any other policy for all states, is denoted asπ∗. It can be directly obtained
from the optimal action-valuefunction Q∗, which is defined as (Sutton and Barto,
1998):

Q∗(s,a) = max
π

Qπ(s,a) ∀s∈ S,a∈ A.

By reformulation of Equation (2.1), it can be shown that the action-value function
exhibits the following recursive relationship known as theBellman equation(Sutton
et al., 1999):

Qπ(s,a) = R(s,a)+ γ ∑
s′∈S

Psa(s
′) ∑

a′∈A

π(s′,a′)Qπ(s′,a′) .

The optimal action-value function becomes under the same transformations (Sutton
et al., 1999):

Q∗(s,a) = R(s,a)+ γ ∑
s′∈S

Psa(s
′)max

a′∈A
Q∗(s′,a′) .

Applied to every combination of states and actions, these equations yield another set
of equations. They could possibly be solved analytically tofind Q∗(s,a) and thereby
π∗ if a model of the environment was readily available. This solution, though, requires
a huge computational effort and is therefore not feasible ingeneral. It is also a strong
assumption that a model is available from the first. More realistically, the model is
learned by the algorithm and action selection provided by planning techniques such as
Dynamic Programming(Sutton and Barto, 1998). However, in this work, only model-
free problems and algorithms are of interest. Such reinforcement learning algorithms
approximate the optimal action-value function iteratively by updating the value of a
state and an action based on the reward received and the valueof the successor state.
Among the most well-known techniques are arguably Watkin’sQ-learning (Watkins,
1989) and Sutton’s temporal-difference TD(λ) algorithm, which have been applied in
a number of real-world problems (Mahadevan and Kaelbling, 1996). We will focus
on the former in the following. Other prominent examples arediscussed thoroughly
by Sutton and Barto (1998).

After taking an actionat in statest , receiving rewardrt+1 and transitioning to state
st+1, Q-learning applies the following simple update rule to thevalue-function:

Q(st ,at)←Q(st ,at)+ α[rt+1 + γ max
a∈A

Q(st+1,a)−Q(st,at)] , (2.2)
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whereα is the learning rate andγ the discount factor as described previously. Q-
learning has been proved to converge to the optimal action-value function under the
condition that states and actions are visited infinitely often and that some other minor
restrictions are obeyed (Tsitsiklis, 1994; Jaakkola et al., 1994).

2.1.2 Exploration and exploitation

An optimal policy for the action-value function would be to always choose the action
a in states which maximizesQ(s,a). In that case, however, the agent would never
explore its options and very likely only exploit a behavior that is not globally optimal.
A more subtle and common exploration strategy is theε-greedy policy. With probabil-
ity ε, the agent takes a random action and only otherwise chooses the action currently
assumed to be optimal. Generally, trading exploration for exploitation effectively is a
challenge for reinforcement learning agents. On the one hand, the agent has to exploit
its current knowledge in order to achieve high rewards. On the other hand, it might
discover better behavior that pays off in the long run if it tries alternative strategies.

The amount of exploration required for attaining an optimalpolicy and hence the
complexity of reinforcement learning grows exponentiallywith the size of the state
space and the number of actions available to the agent. If either of these is large
and a reward is not granted until reaching a goal state, initial exploration effectively
becomes a random walk in the state space. Not until then, the agent starts to propagate
Q-values from the goal state on to previous states. Even traditional speedup techniques
such as experience replay (Lin, 1992) or eligibility traces(Sutton and Barto, 1998), in
which the propagation of Q-values is accelerated, do not help in that case. Under these
conditions, a reinforcement learning problem simply becomes intractable (Whitehead,
1991). The possibility to learn only from rarely provided rewards and the resignation
from rating the utility of every action explicitly then becomes a weakness. Hence,
exploring the environment blindly or randomly as with theε-greedy policy is not
necessarily a clever approach. The agent could better make use of previously obtained
knowledge or knowledge about the problem that is specified bya human domain
expert in order to guide its exploration.

This observation basically leads to three major possibilities for improving the learn-
ing or exploration phase of a reinforcement learning agent.Originally, the values of
the Q-function (Q-values) are stored in a table that is indexed by states and actions. In
a realistic problem setting, this is not feasible because the state space might simply be
too large. In that case, decision-making should take place in an abstracted state space
that is created by dropping irrelevant features from the original one or by substituting
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the Q-value table with a function approximation.State abstractionor generalization
is often provided by neural networks. This way, the complexity of the problem can
be decreased substantially. Since, an experience made in one state of the original
state space will have an affect on the knowledge learned about all other states that
exhibit some similarity to this one with regard to the abstracted state space. However,
Sutton and Barto (1998) warn against using neural networks in particular because they
require non-trivial expertise for their configuration. Apart from that, employing state
abstraction can entail losing the possibility to converge to the optimal policy. Li et al.
(2006) expand on the question of trading off information loss and state space reduction
by giving a more formal analysis of state abstraction.

Complementary to state abstraction istemporal abstraction. Enabling decision-
making at various levels of temporal abstraction has long been a key research topic in
artificial intelligence (Sutton, 1995; Sutton et al., 1999). If an agent is able to solve
a problem at one level of detail after the other, it can constrain its options to those
relevant at the current level of reasoning. Exploration becomes faster because the
agent can effectively take larger steps within the state space. We will study temporal
abstraction in detail during the next subsection.

Another opportunity to speed up learning arises from the finding that not even
humans tackle a problem without having anyprior knowledgeabout how to solve
it. We either obtained this knowledge from our own experience or from advice by
teachers. Biasing a reinforcement learner with prior knowledge has thus been iden-
tified as an important research topic and has been studied widely (Mahadevan and
Kaelbling, 1996). We will discuss this topic in Section 2.1.4.

2.1.3 Temporal abstraction in reinforcement learning

Temporal abstraction in reinforcement learning mainly hasits seeds in two ideas:
macro-actions or temporally-extended actions on the one hand, and hierarchical rein-
forcement learning on the other.Macro-actionsare closed-loop policies that compete
for execution with primitive actions in every state. If a macro-action is chosen for
execution, the agent follows its policy until its termination condition is met. The Q-
value of the statest in which a macro-actionmt was started is updated based on the
rewardsr i received during itsn steps and the Q-value of the termination statest+n:

Q(st ,mt)←Q(st ,mt)+ α[γn max
a∈A

Q(st+n,a)−Q(st ,mt)

+ rt+1 + γrt+2 + · · ·+ γn−1rt+n] . (2.3)
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The Q-values of states visited in between are updated according to Equation 2.2.
McGovern et al. (1997) define macro-actions as fixed policiesprior to their application.
They observe that depending on their definition and the task at hand, the impact
on performance can either be significantly positive or negative. On the one hand,
exploration can be accelerated because the agent can take larger steps in the state
space and reach remote states earlier. On the other hand, theQ-value propagation
traverses the state space faster. The latter, however, can also be achieved by Lin’s
(1992) experience replay or eligibility traces, which havea similar effect. These
techniques do not have any influence on exploration behavior, though. In a similar
way, model-based reinforcement learning algorithms have been augmented to allow
planning with temporally-extended actions (Sutton, 1995;Precup et al., 1997, 1998).

Similar to hierarchical task network (HTN) planners (Sacerdoti, 1975), hierarchical
reinforcement learning systems allow a problem to be brokendown into a hierarchy of
subtasks. Thereby, they make use of prior knowledge about potential decompositions
of the problem in order to compress the possibly large state space. The agent’s execu-
tion follows the hierarchy, while its decisions at every choice point are constrained by
the guidance of the hierarchy. Then, optimal decisions are only to be learned for the
choice points. Such hierarchical problem specifications are described, for example,
by finite state machines (Parr and Russell, 1998), partial, non-deterministic programs
(Andre and Russell, 2002; Shapiro, 2001) or unordered trees(Dietterich, 1998). These
approaches generally drop optimality in favor of a significantly decreased learning
time. The difference to macro-actions is that developers anticipate the applicable
situations for a certain subtask. Macro-actions, in contrast, can be applied freely in any
state. They are considered an augmentation of the learning problem, while a strictly
hierarchical decomposition rather provides an abstraction by restraining reasoning to
parts of the state space at each hierarchy level (Jong et al.,2008). It is not clear
how such a hierarchical decomposition can adapt to dynamicsin the environment, for
example if the task changes intrinsically.

Sutton et al. (1999) generalize those two streams in theoptionsframework. Each op-
tion consists of a set of statesI ⊆ Scalledinitiation setin which it is applicable, a pol-
icy π : S×A 7→ [0,1] ∈R, and a stochastictermination conditionβ : S+ 7→ [0,1] ∈R.
The execution process is the same as for macro-actions with the slight difference that
the applicability of an option can be restricted to a subset of all states. The authors
propose an extension which allows policy and termination condition to depend on all
states taken previously during the execution of the option.Such options are called
semi-Markovbecause their decision-making does not only depend on the current state.
Respectively, the learning algorithm as defined in 2.3 is called SMDPQ-learning.
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The policy of an option can decide to execute another policy,thus giving rise to hi-
erarchically decomposed behavior. The authors also demonstrate how options can be
interrupted during their execution in favor of better alternative behavior. The definition
of options obviously subsumes the specification of macro-actions and hierarchical
reinforcement learning tasks.

Automatic option discovery

It still remains an open question how options come to life. Especially the hierarchies in
hierarchical reinforcement learning algorithms need to bespecified explicitly. Sutton
et al. (1999) propose learning the policies of options the same way policies are learned
by standard reinforcement learning algorithms. They definethe termination states
of an option as a subgoal and associate a reward value with them. Then, standard
reinforcement learning algorithms can be applied to learn apolicy for reaching the
subgoal states from given initiation states. However, still initiation conditions and
subgoals need to be provided explicitly.

Stolle and Precup (2002) propose an algorithm that discovers these subgoal states
automatically. They randomly generate problems in a gridworld problem in order
to obtain visitation counts for states. The highest counts indicate possible subgoals.
States that are found on trajectories passing by a certain subgoal often enough are
considered to be part of the particular option’s initiationset. For each pair of initiation
set and subgoal, a policy is learned using Q-learning. Only after options have been
learned, SMDP Q-learning is applied to learn a policy over these options and primitive
actions. Hence, the agent is required to obey a two-stage process, which we notice as
unsuitable for situated agents.

McGovern and Barto (2001) propose a similar approach, whichlearns subgoals on-
line, though. Subgoals are identified by applying data mining techniques to previously
experienced trajectories and visitation counts, which areonly based on the first visit
of a state in each trajectory. Only states that lie on successful trajectories and not
on any unsuccessful one are considered for counting. It is assumed that a domain-
dependent success condition for trajectories is readily available. The authors observe
that subgoals are more clearly identified using these restrictions. The initiation set of
an option is created by collecting all states that have been visited prior to reaching
the associated subgoal state on any of the relevant trajectories within a certain time
frame. The policy for an option is then learned using experience replay with these
trajectories.
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The general problem with all these approaches is that options are not available
until the goal has been reached for the first time. Hence, options cannot be of help
during the most critical period of learning, in which the agent is basically conducting
a random walk. More recent approaches analyze the structureof the agent’s transition
graph, either globally (Menache et al., 2002) or locally (Özgür Şimşek and Barto,
2004; Özgür Şimşek et al., 2005). Subgoals are assumed to be bottlenecks in the
graph, which can be passed by the agent to enter other strongly connected regions
that possibly have not been visited yet. Analyzing the global transition graph has the
drawback of requiring a copy of the agent’s entire transition history. Only addressing
a recent part of this history, on the contrary, requires additional parameters to specify
the number of transitions to account for. Both these algorithms rely on experience
replay to learn options for discovered subgoals.

The impact of temporal abstraction

Jong et al. (2008) conduct a more detailed investigation on the benefits of using
options. They conclude that the positive effect of experience replay, which is usually
employed to obtain the options’ policies, conceals the mereeffect of introducing
temporal abstraction. To isolate both benefits, they propose an alternative definition
of options as subtasks, which explicitly does not include the policy but rather defines
an option as a subproblem specification. A policy is not learned ad hoc directly after
the subgoal has been discovered, but rather concurrently with the overall policy. The
agent basically learns an overall policy and a policy for each subgoal at the same time.
The authors note that automatically discovered options canheavily distract exploration
similarly to fixed macro-actions. Options are generally selected equally to primitive
actions, such that exploration is implicitly biased towards their subgoals. If the goal
can only be reached with a number of primitive actions from such a subgoal, it is less
likely to be attained by a random walk than without utilizingoptions. Jong et al. also
note that in order to make full use of temporal abstraction, an agent should be able
to generalize from the application contexts of temporally-extended actions. This is
the main goal of approaches that learn subgoals and useful temporal abstractions by
examining policies obtained in related tasks (Thrun and Schwartz, 1995; Pickett and
Barto, 2002). They seek to discover subpolicies that can be transferred to future tasks.

Jong et al. do not consider the benefit that options contribute to the understandabil-
ity of learned knowledge. If a problem is broken down into subtasks, it can be more
easily understood by humans. In addition, they do not account for the opportunity
to simplify decision-making. Because options are defined over a part of the state
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space only, they could actually constrain reasoning to the relevant states and actions.
Moreover, the number of complex decisions necessary at the high-level policy can
be reduced because control is shared with the options’ reasoning processes. This is
especially interesting when sensing the environment and subsequent decision-making
are costly.

2.1.4 Prior knowledge in reinforcement learning

As mentioned above, a reinforcement learner is likely to endup exploring its en-
vironment randomly until it receives a reward for the first time (Whitehead, 1991).
This surely does not work for large state spaces as found in real-world applications.
Incorporating prior knowledge about the task in order to decrease this learning time
has hence been recognized as a major requirement for feasible reinforcement learning
systems (Mahadevan and Kaelbling, 1996). We already have seen possibilities for
guiding a reinforcement learner by exploiting temporal knowledge about the task in
the previous subsection. We will expand upon further possibilities in the following.

Integrating prior knowledge into reinforcement learning follows two primary goals:
Either guiding exploration towards promising actions or interesting parts of the state
space; or reducing complexity by constraining the agent’s choices. Prior knowledge
is specified about the agent’s environment, the problem itself or the goal states (Hailu
and Sommer, 1999). It can be obtained from a related task, from another agent or
a domain expert. It can be rather intrusive by directly manipulating the knowledge
base of an agent or it can give hints to the agent, which it is free to pickup or not.
However, coping with inaccurate domain theories remains a problem. Unfeasible prior
knowledge can definitely harm an agent’s performance (Hailuand Sommer, 1999).

Hailu and Sommer (1999) discuss options and effects of reflecting prior knowledge
in the initialization of Q-values when a table-based Q-function is employed. Koenig
et al. (1996) show that in order to reduce complexity of a reinforcement learning
problem, such a Q-value initialization can be based on heuristics that are consistent or
admissible for A∗-search1. However, this work is restricted to the theoretic properties
of reinforcement learning as only a table-based Q-functionis assumed. The methods
proposed are not feasible for large state spaces, for which the effort of initializing
Q-values would be tremendous. Results cannot be directly transferred to systems that
deploy function approximation for state abstraction.

1For an explanation ofA∗-search refer to Russell and Norvig (2003).
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Artificial neural networks are a common choice for function approximation in re-
inforcement learning. Influential techniques for priming these are the EBNN and
KBANN algorithms (Mitchell and Thrun, 1993; Shavlik and Towell, 1989). Both
incorporate domain theory in their processes of learning a network. Prior knowl-
edge is either represented by a set of previously trained neural networks or a set of
propositional horn clauses, respectively. Still, domain knowledge has to be encoded
on a fairly fine-grained level. In fact, even configuring a function approximator or
identifying a suitable state abstraction often requires itself prior knowledge about the
specific structure of the learning task.

Instead of directly modifying the agent’s underlying knowledge base, Dixon et al.
(2000) guide the exploration of a reinforcement learning controller by a number of
multiplexed static controllers. The system is able to decide when a particular static
controller does not give beneficial advice anymore, for example because the environ-
ment has changed inherently or the learning controller has achieved a better policy.
The authors observe a substantial decrease in learning time. Price and Boutilier
(1999) decouple the source of prior knowledge even more fromthe learning agent.
They propose an algorithm that a reinforcement learning agent can apply to learn by
observing a teaching agent. However, the agent is assumed toknow its reward model.

Lin (1992) train an agent with one or more possible solutionsto the problem. These
experience traces or sequences of actions are presented to the learning algorithm
repeatedly to increase the impact on the policy being learned. A substantial speedup of
learning is noticed. Maclin and Shavlik (1996) introduce a system that takes advice in
a simple programming language, which supports higher-level constructs such as loops
or decisions. Advice is integrated into the agent’s knowledge base by an extended
KBANN method and can be injected at any time during the agent’s lifecycle. Having
a more powerful language to specify prior knowledge alleviates the work of domain
experts and facilitates their acceptance of the system. In particular, we will refer to
prior knowledge that comprises temporal knowledge about a task astemporal prior
knowledge.

Indirect guidance of a reinforcement learner can also be provided by shaping–
extending the received reinforcements by a domain-dependent function and thus mo-
tivating the agent to visit particular states or to take particular actions (Ng et al.,
1999; Wiewiora et al., 2003). The invariance of the optimality of policies under this
transformation has been proved by Ng et al. (1999) for certain conditions. Already
simple reward transformations can yield a strong speedup. However, they might be
difficult to identify.
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2.2 Hybrid agent architectures

As outlined in the introduction, hybrid agent architectures are characterized by their
intention to bring together reactive and deliberative architectures. Agents that apply
one of the former are mainly defined by their ability to react to external events instantly.
The latter specify agents that carefully reason about theirenvironment first in order
to obtain an anticipatory course of actions for reaching their long-term goals. We
argued that both have their shortcomings, which are, for example, addressed by BDI

architectures. Even though PGS is intended to be embedded into the BDI framework,
we will take a more general view here, accounting for its capability to serve as an
agent architecture in its own right. We note that PGS has a strong relationship with
horizontally layered architectures, in which each layer independently suggests a be-
havior based on current sensory input (Weiss, 1999). To narrow the scope of this
discussion down further, we focus here on architectures in which higher-level layers
or modules obtain temporally abstracted knowledge by extraction from lower-level
modules. In that, this is closely related to the previous discussion on option discovery
in reinforcement learning. A more encompassing discussionof architectures related
to PGS can be found in Karim (2009).

CLARION or “Connectionist Learning with Adaptive Rule Induction ONline” is a
hybrid agent architecture that stems from work in cognitivepsychology and was de-
veloped by Sun (1997). It is based on the assumption that human cognition processes
generally work at two knowledge levels, one of which isimplicit and the otherexplicit.
The former is assumed to be executable but distributed and inaccessible for manipu-
lation. It is implemented by a neural network, whose knowledge inherently meets
the requirement of being distributed over a number of neurons. Explicit knowledge,
in contrast, can be more readily interpreted and is accessible for modification. In
CLARION, explicit knowledge is implemented by symbolic, propositional state-action
rules. At each decision point, both levels provide a weighted recommendation for the
next action. The system chooses one of these probabilistically.

Because of the different knowledge representations in CLARION, both levels need
to apply different learning strategies. The implicit bottom-level module employs Q-
learning to adapt its neural network. Obviously, it can not explicitly manipulate
its knowledge. The top-level module learns by extracting symbolic rules from the
bottom-level during execution. These rules are later on specialized or generalized
based on the outcome of subsequent executions. Sun et al. (2005) note that explicit
learning dominates in simple tasks with a small input dimensionality. Otherwise, im-
plicit learning is more feasible because its generalization or approximation capabilities
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handle complexity more effectively. This observation is supported by the criticism
towards symbolic reasoning as discussed previously. However, the power of symbolic
manipulations such as planning or hypothesis testing are only available to the top-
level. Having different knowledge representations be manipulated concurrently leads
to positive synergy effects. Learning does not only work bottom-up but indirectly also
top-down because explicit knowledge guides the agent towards relevant features or
information. Both learning speed as well as asymptotic performance are assumed to
benefit from this interrelation (Sun et al., 2005). Sun and Zhang (2004) note the
possibility to encode prior knowledge as rules in the top-level. The bottom-level
would initially rely on the guidance of the top-level and gradually gain more responsi-
bility while it is augmenting its knowledge. However, specifying more complex prior
knowledge in the form of state-action rules only is cumbersome.

CLARION does not integrate the possibility for explicit planning even though Sun
et al. (2001) found that human subjects were subconsciouslyapplying planning tech-
niques in specific tasks. Because CLARION is outperformed by humans in these tasks,
Sun et al. assume the lack of planning to be one of the inherentdisadvantages of
CLARION. Sun and Sessions (1998) and Sun (1999) propose an algorithmthat extracts
plans from learned Q-values. They use beam search to find the path that is most likely
to reach the goal based on the assumption that a Q-value indicates the probability of
reaching the goal from that state. A variant of the algorithmextracts conditional plans,
taking into account a certain number of alternative states and actions in each step. The
process is run offline after Q-learning has been applied. However, Sun and Sessions
note that plan extraction already yields reasonable results with Q-values not having
converged yet.

The explicit-implicit distinction is also peculiar to the ACT-R cognitive architecture
(Anderson, 1990). On the explicit level, it hosts declarative and procedural or asso-
ciative knowledge in the form of production rules. The implicit level is comprised
of statistical information related to the frequency in which specific explicit knowl-
edge is accessed. Essentially, this affects the likelihoodthat certain knowledge is
retrieved or certain productions are reused. Hence, this isdifferent to knowledge
separation in CLARION, where information was simply kept redundantly on both
levels. Knowledge in ACT-R is arranged within problem spaces, thus effectively
reducing the amount of data to consider in a particular situation. Learning either seeks
to assess the utility of declarative knowledge or to identify new knowledge instances
or productions (Lebiere et al., 1998). Lebiere and Wallach (2001) describe how
temporal knowledge can be encoded on the implicit level by associating consecutive
productions. However, it is only an indirect description oftemporal knowledge and
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not a direct one. ACT-R has been frequently used in cognitive modeling (Bryson,
2000).

Garland and Alterman (2001) propose a technique that allowsagents to learn coor-
dinated procedures. Successful execution traces of coordinated activities are analyzed,
summarized and stored in a case-base. These cases mainly contain expectations
about communication partners and coordination points as well as suitable applica-
tion contexts. These procedures can be recalled, for example, when an associated
communication request is received and a longer interactionis expected. Olivia et al.
(1999) also employ case-based reasoning2 in order to reuse previously applied plans
in BDI agents. In a planning situation, previous cases are searched first, possibly
a suitable one retrieved and eventually adapted to the current situation. Similarly,
concrete planning sequences in the agent architecture PARIS are transformed to ab-
stract cases (Bergmann and Wilke, 1996). The translation process is guided by user-
defined rules. On demand, an abstract case can be translated back to a concrete plan
instance. Those abstract operators in the abstract case guide the planner to find a
concrete implementation for that plan. In general, these approaches rely heavily on
classical planning tools and languages.

Common to the architectures presented above is the organization of knowledge
on two distinct levels, both of which apply different representations and possibly
reasoning techniques. For case-based reasoning approaches, this leads to a reduction
in planning time because of the reuse of previous reasoning results. In the case of
CLARION and ACT-R, the interactions between implicit and explicit knowledge lead
to positive synergy effects, which have a favorable impact on learning performance.
However, case-based reasoning requires classical planning techniques, plan extraction
for CLARION is rather an offline learning approach, and ACT-R sequence learning
does not yield an explicit plan representation. These observations motivate the devel-
opment of a hybrid architecture that extracts explicit plans from implicit knowledge
in an online manner and reuses them competitively with its implicit knowledge. In
order to facilitate plan reuse, acquired plans should be abstracted in a way such that
they become applicable in a broader context as done in the case-based reasoning
approaches.

2For an overview of case-based reasoning and case-based planning refer to Mitchell (1997) and Ghallab
et al. (2004), respectively.



3 The Plan-Generation-Subystem

In the previous chapter, we have discussed the benefits of temporal abstraction and
the advantages of hybrid agent architectures. We have identified situated, resource-
bounded agents as the main interest of this work. In this chapter, we will introduce
PGSas a hybrid agent architecture that extracts temporally abstracted knowledge from
implicit knowledge using an online learning approach. We will first describe plans in
more detail because they provide the representation of temporal knowledge in PGS

(Section 3.1). Then we will present and review the original PGS model in Section 3.2.
We will introduce various extensions to the model in Sections 3.3 and 3.4. Finally, we
will discuss the integration of prior knowledge to the modelin Section 3.5.

3.1 Plans

In classical planning agents, a plan is the product of deliberative reasoning and de-
scribes a recipe for reaching a certain goal (Ghallab et al.,2004). Particularly in
STRIPS-like planning, a plan essentially consists of the following entities (Fikes and
Nilsson, 1971):

Precondition The precondition determines the situations in which the plan is appli-
cable.

Goal The goal specifies the conditions that this plan is supposed to achieve.

Body The body defines which actions to execute in sequence from theprecondition
in order to achieve the goal.

Plans might generally follow more complex control flows, though, for example
including conditions, loops and hierarchical decompositions (Ghallab et al., 2004).
Likewise, goals might be more descriptive, allowing, for example, to have the execu-
tion of entire action sequences as an objective (van Riemsdijk et al., 2008). However,
the concrete execution of a plan will generally turn out to bea plain action sequence.
This is the case we are interested in here. We note that plans as specified above are

27
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subsumed by the options framework, which was introduced in Section 2.1.3. A plan’s
precondition can be described by an option’s initiation set, the goal by the states in
which the option’s termination condition holds, and the plan’s body by a deterministic
policy.

The task of plans in the context of BDI agents is slightly different, which mainly
stems from the fact that they are typically not obtained by reasoning at runtime. In-
stead, a plan is defined by developers and brought to execution once the agent has
committed to the intention of performing this plan in order to achieve its associated
goal. Further reasoning is restricted to options that are compatible with current inten-
tions, thus effectively focusing and accelerating decision-making (Pollack, 1992; Rao,
1997). This might lead to suboptimal behavior but generallysaves the agent time and
resources. BDI plans are usually only partial, meaning that they are not supposed to
attain a final goal. Instead, they only seek to achieve subgoals, possibly involving the
spontaneous execution of other plans (Bratman et al., 1988).

A plan constitutes explicit information about the sequentiality of actions. Hence,
the knowledge about when to apply a plan contains more information than the knowl-
edge about the applicability of each of these actions alone.However, it requires less
information to be stored because only the plan’s application context or precondition
needs to be kept. Therefore, a plan is basically a compression of lower-level knowl-
edge, which also makes it particularly suitable for communication to other agents
(Sun and Sessions, 1998). Moreover, having temporal knowledge about the intentions
of other agents allows more informed reasoning about the coordination of behavior
(Pollack, 1992). Having a clear goal and comprising temporal knowledge, plans can
also be more readily understood by humans. They have this advantage over simple
state-action rules, from which temporal knowledge is difficult to obtain (Karim, 2009).

3.2 The original model

PGSserves as the top-level module of a hybrid agent architecture to extract knowledge
from a low-level learner (Karim et al., 2006a). It monitors the execution of the bottom-
level and records sequences of actions as reusable plans based on domain-dependent
heuristics. The bottom-level module can be any system that proposes atomic actions
for execution. It is usually a rule-based system with a low-level knowledge represen-
tation. Here, the bottom-level is implemented by a reinforcement learning system that
learns state-action rules. Plans are not only recorded but also reused when they are
expected to be successful.
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Plan extraction in PGS relies on the problem being broken down into a set of
subgoalsby a domain-expert, which do not have to relate to each other,though.
Each subgoal is assigned a triggering condition calledclue that determines whether
an action would move the agent towards this very subgoal. Actions are generally
appended to a currently recorded plan as long as they make itsclue condition hold and
thus move the agent towards its associated subgoal. Thepreconditionof a plan is the
situation in which its first action was recorded. To make plans comparable, each one
of them is assigned anexpected utility, which is generally based on the reinforcement
learning rewards received during its recording and the confidence that the agent has
in this plan. The confidence rises or falls with the plan achieving its original reward
again on subsequent executions or not. The expected utilityis also supposed to be
compared with the expected rewards of actions proposed by the bottom-level learner
in order to decide which one of them to execute. Hence, a plan in PGS has a similar
definition as a classical plan as described in the previous section. It consists of:

• A precondition, in which it started to be recorded and in which it is assumed to
be applicable again.

• A goal or subgoal, describing the intention this plan is supposed to fulfill.

• A plan body, consisting of a simple action sequence.

• An expected utility, making plans comparable with each other and with single
actions.

In every step, the system makes a decision on whether it performs the action pro-
posed by the bottom-level module or a plan from its plan library unless it is currently
executing a plan anyway. This decision is based on a number offactors, some of which
include the availability of any plan for the current situation and the difference of its
expected utility and the expected reward of the single bottom-level action. Hence, PGS

only requires the current situation, the action proposed bythe bottom-level module
and its expected reward to be provided for its decision-making. This tuple defines
the interface between PGS and the bottom-level module. The system architecture is
illustrated in Figure 3.1.

Because the details of PGShave already been described thoroughly by Karim (2009),
we will refrain from repeating this information here and instead focus on the issues
important for this work. The execution cycle of PGS is depicted in Algorithm 1.
If the agent is currently executing a plan, the next action insequence is chosen to
be performed (line 3). Otherwise, the bottom-level module is asked to sense the



The Plan-Generation-Subystem 30

Environmentst+1

rt

t

rt+1

PGS

Learner
Reinforcement

at’

s
st at E{r(a )}t

Figure 3.1: The abstract PGS architecture and execution cycle. The agent receives
situation st and rewardrt at time t. The reinforcement learner passes
the state information and a proposed actionat together with the expected
reward E{r(at )} for that action to the PGS module. This decides on
either performing a plan or the bottom-level action and answers to the
environment with actionat ′ . This leads to a new situationst+1 and reward
rt+1. The reinforcement learner is omitted in this process whilea plan is
executed.

environment and make a proposal for an action (line 6). Then,PGS tries to match
the current state with the precondition of any of its plans. If any of the found plans’
expected utility exceeds the expected reward of the bottom-level action, that one with
the highest expected utility becomes a candidate for execution (line 7).

The expected utilityof a plan is defined by the factor of the reward that the first
action in the sequence received when it was recorded and the confidence the agent
has in the plan’s success. The confidence is initialized withone on the plan’s con-
struction. During subsequent reuses, it is reinforced or penalized depending on its
success. Penalizing happens when a plan action turns out to be non-executable or the
final reward cannot meet the plan’s reward. Otherwise, the confidence is reinforced.
The default behavior is that penalizing decrements the confidence value by one if it
was two or larger before. The current confidence value is halved if it is smaller than
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Algorithm 1 The PGS execution cycle

Require: Ci = (si ,ai ,E{r(ai)}) is the state-action-reward tuple at execution stepi, in
whichsi is the state,ai the action and E{r(ai)} its expected reward.G is the set of
subgoal-clue tuples.ithres is a threshold number of execution steps, such that plan
recording is activated after theithres-th step. Initialize plan libraryP , set selected
plan ps = null.

1: for each execution stepi do
2: if ISEXECUTINGPLAN () then
3: EXECUTEPLAN ()
4: continue
5: end if
6: si ,ai,E{r(ai)}← BOTTOMLEVEL()
7: ps← SELECTPLAN (si ,ai ,E{r(ai)},G ,P )
8: if ps 6= null then
9: EXECUTEPLAN ()

10: continue
11: end if
12: if i ≥ ithres then
13: ASSOCIATETOPLAN (si ,ai,E{r(ai)},P )
14: end if
15: EXECUTEACTION(ai)
16: end for

two. Reinforcing increments the confidence value by one independent of its current
value. A plan is removed from the library if its expected utility drops below a certain
threshold. In that, a plan can be assigned a specificlife time, namely the time between
its recording and its removal from the library. The confidence update policy described
above was retained from previous work, for which it was empirically obtained (Karim,
2009).

If a plan was selected, its first step is executed (line 9). If no suitable plan was
found, the bottom-level action is considered a possible plan action. If it contributes
to the subgoal of any currently recorded plan, it is appended. If a plan is not being
recorded and the bottom-level action contributes to one of the subgoals, it becomes
the first step of a new plan associated to this subgoal with thecurrent situation as its
precondition (line 13). If the plan reaches a certain minimum length, it is activated



The Plan-Generation-Subystem 32

and thus becomes available for selection later. If no plan action can be performed, the
bottom-level one is carried out (line 15).

3.3 Discussion

The architecture of PGS is largely inspired by CLARION, which was introduced in
Section 2.2. Like CLARION, PGS hosts two different knowledge representations and
reasoning techniques on two different layers. Similarly, the main knowledge transfer
works bottom-up. However, the top-level of PGS hosts plans, which are more abstract
than propositional rules. The external plan extraction capability of CLARION only
works offline1 whereas PGS is an online learning approach, which might foster plan
extraction in situated agents. PGS does not apply any top-down learning such that
bidirectional synergetic effects as in CLARION cannot be observed. The general
approaches of execution monitoring for plan extraction andstoring plans in a case-
base are also found in architectures that apply case-based reasoning as discussed in
Section 2.2.

As shown already by Karim et al. (2006a,b, 2008), PGS is indeed able to extract
reasonable and also relatively long plans from the bottom-level reinforcement learner.
By extracting plans from low-level rules, PGS obtains temporal and hence more ab-
stract knowledge. The control policy described by the low-level learner is compressed
and becomes more accessible for inspection and suitable forcommunication. By
committing to a course of actions once, the agent can omit some part of the otherwise
necessary decision-making. This is especially favorable if sensing the environment or
reasoning is expensive or only rarely possible.

Plans can be integrated seamlessly to the plan library of a BDI agent as outlined
in Section 3.1. Likewise, plans in PGS can be described by the options framework,
which was introduced in Section 2.1.3. One of their main restrictions regarding
these formalisms, however, is their lack of hierarchical decomposition. This follows
naturally from the procedure of plan extraction used in PGS. Another main difference
is their notion of goals, which does not consider a goal as a set of particular states to
reach but rather as a classification of each action. It is a strong assumption that this
knowledge is readily available to the agent designer. In fact, if one is able to classify
every action as either helpful or not, the motivation for employing a reinforcement

1Taking into account that according to Sun and Sessions (1998) plans can be extracted before the Q-
learning algorithm has converged, one might imagine an instance of CLARION that, in fact, extracts
and uses preliminary plans before convergence.
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learner as the bottom-level module seems questionable. Taking into account that
immediate knowledge about the usefulness of every action isavailable, a supervised
learning system might be more suitable as reasoned in Section 2.1. Actually, PGS as
described in the previous section even goes a step further. In order to decide whether a
proposed action is supportive of any subgoal, its outcome has to be predicted because
its actual execution only happens after it is considered to be appended to a plan.

PGS has the capability of discovering options from a reinforcement learner. This
process has an advantage over other option discovery algorithms because it proceeds
inherently online and does not bias exploration towards particular states. It rather
biases exploration towards particular action sequences, which previously have already
been found to be useful. This advantage also stems from the fact that plans are not
potentially used in every possible state but only in those allowed by the plan selection
process. This renders their influence on exploration less substantial and more focused.
As opposed to options, plans are not fully integrated to the same decision-making
process as primitive actions, which are essentially their competitors. Plans rather
override low-level behavior as done in Brooks’s subsumption architecture. That makes
balancing plan execution and primitive action execution more difficult.

In fact, comparing the expected utility of a plan and an action is not straightforward.
According to the description in Section 3.2, the expected utility of a plan is essentially
determined by the reward that its first action received. Thisdoes not take into consider-
ation that later steps might have much lower or higher rewards. The comparison with
primitive actions also does not account for the rewards possibly received after deciding
to take the primitive action. A reward is basically not a reliable long-term indicator
for the value of a state or an action and hence rather not suitable as an indicator for the
value of a plan. Furthermore, assuming that the reward of an action can be predicted
is also a strong assumption, which is generally not made in reinforcement learning. In
the options framework, in contrast, the value of an option isdetermined by its Q-value,
which does only depend on the agent’s experience and not on insight knowledge.

Likewise, the agent designer is assumed to have knowledge about the convergence
time of the underlying reinforcement learner. She has to have knowledge aboutithres–
the state-action-reward tuple from which on PGS is allowed to record plans. This
knowledge is not necessarily easy to obtain nor might it be available at all.

There is space for improvement regarding the recording of plans. So far, plan
recording is interrupted if another plan is selected for execution. This will often lead
to shorter plans being acquired than would actually be possible.
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Algorithm 2 The extended PGS execution cycle

Require: Ci = (si ,ai ,qi) is the state-action-reward tuple at execution stepi, in which
si is the state,ai the action andqi the Q-value of that action. G is the set of
subgoal-clue tuples.ithres is athresholdnumberof executionsteps,suchthatplan
recordingis activatedafter the ithres-th step. Initialize plan libraryP , set selected
plan ps = null.

1: for each execution stepi do
2: si ← BOTTOMLEVEL()
3: if ISEXECUTINGPLAN () then
4: ai ,qi ← EXECUTEPLAN (si)

5: ASSOCIATETOPLAN (si ,ai,qi ,P )
6: continue
7: end if
8: ai ,qi ← BOTTOMLEVEL()
9: ps← SELECTPLAN (si ,ai ,qi ,G ,P )

10: if ps 6= null then
11: ai ,qi ← EXECUTEPLAN ()

12: ASSOCIATETOPLAN (si ,ai,qi ,P )
13: continue
14: end if
15: qi ← EXECUTEACTION(ai)
16: if i ≥ ithres then
17: ASSOCIATETOPLAN (si ,ai,qi ,P )
18: end if
19: end for

3.4 The extended model

Having identified the shortcomings of the original PGS model in the previous sec-
tion, we will now describe the major changes we introduced. The extended algorithm
is illustrated in Algorithm 2. Obvious changes to the original one are underlined or
crossed out.

The first modification stems from the general observation that rewards are not the
optimal indication for the value of an action if the bottom-level module is provided by
a reinforcement learner. As described previously, Q-values provide more information
because they suggest the rewards that are likely to be received when taking a particular
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action and following the optimal policy from there on. This extended information is
not contained in reward values. Hence, we generally use the Q-value of an action as
its “expected reward” in the sense of PGS. We will from hereon denote the reward
received by the environment as theimmediate reward. Thereby, predicting the im-
mediate reward of an action based on insight knowledge aboutthe reward function
becomes unnecessary because the Q-value, in contrast, is readily available. This also
means that the reward of a plan is determined by a Q-value. In particular, a plan’s
reward is obtained from the maximum Q-value of the state reached by the last step
during recording. In that, a comparison between the value ofa single action (its Q-
value) and a plan’s reward is more reasonable. The plan’s reward by being derived
from a Q-value denotes the actual cumulative reward expected to be received after
executing the plan and following the optimal policy thereafter. The Q-value of an
action has the same meaning.

However, this still does not rule out the case in which a plan might have a higher
reward than an action but the action would lead to higher rewards received later.
Nevertheless, it reduces this risk, especially when a transition to the (only) goal yields
the highest possible immediate reward. Then, higher Q-values indicate states closer
to the goal, which means that eventually the inferior singleaction will get a higher
Q-value if it really brought the agent closer to the goal thanthe plan. We generally
allow actions to be appended to a plan if their Q-values are higher than the Q-value of
the first action of that plan. The approach of exploiting Q-values for plan extraction
is related to plan learning in CLARION as proposed by Sun and Sessions (1998) and
Sun (1999).

To allow PGS to converge to the optimal policy at all, we modified the SELECT-
PLAN method to include some random exploration. Even if a plan hada larger
expected utility than the action proposed by the bottom-level, with probability ε2,
which is a parameter to the model, it executes the single action nonetheless. If any
plans are found suitable for execution, one of them is chosenrandomly. The plan
with the highest expected utility has ann3 times higher chance to be selected than the
second one. That one, in turn, has ann times higher chance than the third one and so
forth and so on. The first step of the selected plan is then executed (line 11).

Another major modification addresses the general problem that decisions about
appending actions to plans were originally depending on predictions of the actions’

2In this work,ε is generally set to 0.1, which is a frequently used value in the ε-greedy reinforcement
learning exploration strategy.

3In this work,n is set to 4 because this was empirically found to be a good heuristic.
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outcome. To know which subgoal is supported by an action, itsoutcome needs to be
considered. To overcome this issue, actions need to be carried out first before any
decision about their recording can be made. This is reflectedin Algorithm 2 on lines
15 and 17, which are swapped as opposed to the original algorithm. As mentioned
earlier, the recording of a plan is stopped once another planis selected for execution.
It would be preferable, though, that recording continues inthat case such that the old
plan becomes a suffix of the new one and a longer plan is obtained. This change is
reflected on lines 4 and 5 as well as 11 and 12. The EXECUTEPLAN method returns
the action performed by the plan and the Q-value of the new state. This information
is fed into the ASSOCIATEPLAN method.

As previously discussed in Section 2.2, hybrid architectures can benefit from syn-
ergy effects between their layers. Originally, PGS only conducts bottom-up learn-
ing – extracting plans from the bottom-level module – although a possible top-down
learning approach is straightforward. The reinforcement learner is now enabled to
learn from the execution of plans, which thereby act as static controllers. Transfer
of knowledge is simply achieved by updating Q-values duringthe execution of plans.
This approach is similar to those of Maclin and Shavlik (1996); Lin (1992); Dixon
et al. (2000) as depicted in Section 2.1.4. Making the knowledge transfer bidirectional
is assumed to facilitate the performance of the overall system. This assumption will
be subject to empirical investigations in Chapter 5. One trade-off implicated by this
change needs to be mentioned upfront: Having the reinforcement learner learn during
the execution of plans requires additional sensing of the environment, which could
have been saved otherwise. This is reflected in lines 2 and 4, where the bottom-level
is also required to sense the environment even if a plan is executed. However, no
decision-making is necessary during plan execution.

We assume the plan confidence update process to be effective enough to foster
the use of effective plans over that of less effective ones, with effectiveness being
determined by the comparison of taking single actions and using the plan. Hence,
we consider the restriction to start using PGS only after a certain number of state-
action-reward tuples unnecessary. This way, another component that required addi-
tional knowledge is rendered obsolete. This is in line with Sun and Sessions (1998).
They observed that plan extraction in CLARION is useful even if Q-values have not
converged yet.
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3.5 Prior knowledge in PGS

In Section 2.1.4, we discussed the definition of prior knowledge in a higher-level
language, generally considering that prior knowledge was necessary to render any
reasonably complex reinforcement learning task solvable.We propose here that plans
as in PGS can be deemed to be such a language. In fact, BDI agents are typically
defined by prior knowledge plans. Sun and Zhang (2004) observe the benefit of
defining prior knowledge at a higher level to feed it down to a lower level knowledge
base. We argue that the plan execution process of PGS provides a convenient hook
for injecting prior knowledge into an agent. We will briefly discuss these options here
and exploit them later on during the empirical evaluation. We will then also allude to
the risks of priming an agent with prior knowledge.

The outline of Algorithm 2 immediately suggests four pointsthat can benefit from
prior knowledge:

Subgoal-clue tuplesThe more comprehensive the problem can be covered by dis-
tinct subgoals, the more plans can be recorded and the more accurate they are
going to be.

Plan library The plan library can be primed with plans that serve as preliminary,
partial solutions to the problem. Because the reinforcement learner is also
learning during the execution of a plan as described in the previous section,
it is likely to benefit from guidance by plans.

SELECT PLAN method Depending on the domain, it might be feasible to select plans
for reuse in states that are similar to their original preconditions. This is in
line with the argument of Jong et al. (2008) that temporal abstraction and state
abstraction should go hand in hand.

ASSOCIATETOPLAN method Once the recording of a plan has been started, it is
necessary to decide how long subsequent actions are to be appended. The
decision could rely on the development of subsequent rewards or on knowledge
about the domain-specific semantics of actions and their interrelations.

All these points provide non-intrusive and intuitive ways to specify prior knowl-
edge, meaning that the fine-grained knowledge base and parameters of the underlying
reinforcement learner do not have to be modified. They allow for encoding insight
knowledge either about the problem or the environment. Preliminarily defined plans
can be easily exploited to roughly guide the agent towards promising states or actions.
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The impact of varying subgoal-clue tuples has been studied by Karim (2009). Here,
actions will be appended to plans according to the specification in the previous section,
which is led by Q-values. We will study priming the plan library and guiding the plan
selection process in detail during the evaluation of the model in Chapter 5.



4 Implementation

In the previous chapter, we have introduced PGS and proposed a number of changes
and extensions. In this chapter, we will adapt an engineering point of view and
describe PGS on a more technical level. In particular, we will outline itsarchitec-
ture and depict possible extension points. However, implementation details are not
of particular interest to this thesis because they do not contribute to answering the
research questions. They are hence omitted. The following discussion will thus be
rather concise.

4.1 Architecture

The implementation is based on previous work by Karim et al. (2008) and is provided
in the JAVA programming language1. During the course of this thesis, the original
source code was extensively re-factored and corrected. Effectively, a reimplementa-
tion of the system was conducted. The goal here was to increase the understandability
and extensibility of the architecture in order to facilitate further research. The archi-
tecture with its main components and their interrelations is depicted in Figure 4.1.
Most of these components correspond to entities introducedwith the PGS algorithm
in Section 3.2. We will present them briefly in the following.

The StateAction class and theState and Action interfaces

TheStateAction class corresponds to the main interface between PGS and the low-
level module – the state-action-reward tuple. It is a container for concrete, domain-
specific instances of theState andAction interfaces. The former holds the current
state of the environment as it was sensed by the agent’s low-level module. The latter
corresponds to the action that the low-level module proposed for execution. It also
contains its expected reward value. AStateAction object is passed to thePGS class
in every execution step unless a plan is executed.

1http://java.sun.com
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Figure 4.1: The concrete architecture of PGS with its main components.

The PlanLibrary, Plan, andGoal interfaces

Plans are specified by concrete implementations of thePlan interface. Each plan
is associated with a particular, domain-specific goal, represented by a concrete im-
plementation of theGoal interface. In addition, a plan holds a list ofStateAction
objects, which correspond to the plan’s action sequence. All plans of an agent are
hosted in aPlanLibrary instance, which basically acts as a container.

The PGS class

The PGS class is the central component of the system. It wires together all other
components including the low-level module. From that, it receives aStateAction
instance in every execution step, which is then fed to the PGS execution cycle as
described in Section 3.2.

The CommunicationModule class

Karim (2009) elaborated on strategies for communicating plans between agents. The
CommunicationModule class is responsible for deciding on whether to send a partic-
ular plan to other agents or not and which received plans to keep for further reuse.
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4.2 Extension points

From the architectural view described above, some possibleextension points follow
naturally. It should be noted that most of them were only uncovered by significant re-
factoring. We focus on those that are of general interest or relevant to the evaluation
of PGS in the next chapter. In particular, we will omit those that only vary with the
domain at hand and that have no general value, namely theState, Action, andGoal
interfaces.

Plans and plan management

Plans are central to PGS, so is their organization. Plans need to be created and deleted
if they turn out to be useless. They also need to be indexed forfast access. It is
essential that the system is able to determine plans that areapplicable in a certain
situation quickly. The plan library also might treat plans differently according to their
age, for example. These requirements depend on the specific application of the system
and are hence encapsulated in a separate module. Plans themselves might come in
different shapes. In particular, each plan determines the states in which it is applicable
itself. This allows for state abstractions be defined specifically for each plan. Likewise,
plans are supposed to handle confidence updates autonomously. This gives rise to
various opportunities. For example, prior knowledge plansare defined by the same
interface as ordinary plans, which allows their seamless integration into the system.

Communication

PGS itself is a single agent architecture. However, a PGS agent might possibly find
itself in a multi agent scenario. In that case, plans can serve as a convenient way to
exchange behavior policies. We elaborated on that in Section 3.1. Because commu-
nication is generally an important part of agent systems, its logic is encapsulated in a
separate module. This module might, for example, use a threshold on the confidence
values of plans to decide which ones to communicate. It couldalso decide on sending
plans in bulk to reduce time spent on establishing communication connections. How-
ever, this component is not only responsible for sending plans but also for receiving
them. It could apply reasoning about which received plans toincorporate into the plan
library and which ones not.



5 Evaluation and discussion

In the previous chapters, we have introduced PGS, discussed implementation details,
described the plan acquisition process, and identified limitations of the model. We
have also proposed extensions to the model, which we seek to evaluate empirically
in this chapter in order to support our claims. In general, weprovide a careful and
thorough hands-on analysis of the PGSarchitecture to depict its very peculiarities. We
also expect new questions to arise that might encourage further investigations. First,
we will briefly review the general hypotheses we seek to test.

Even though plan extraction observed in earlier work satisfied the expectations, plan
reuse did not (Karim, 2009). No significant plan reuse was observed and mostly plans
consisting of only one step were reused, which is basically nothing else than a single
action. We hypothesize that the extensions proposed in Section 3.4 and the general
re-engineering conducted lead to longer plans being reusedand a generally high use
of plans compared to single primitive actions.

Earlier, we argued for a plan as temporal knowledge comprising more information
than the sum of its actions. Therefore, we hypothesize that reusing plans in situations
that are beyond their original preconditions has a larger positive effect on performance
than reusing a single action. We presume that this effect especially holds for the time
of learning, when the low-level reinforcement learner still explores the environment.
In this phase, it can particularly benefit from guidance.

In the same way, we expect temporal prior knowledge in the form of plans to facil-
itate the performance of such a system. We hypothesize that injecting plans as prior
knowledge can increase performance even further. We have already demonstrated that
the integration of temporal prior knowledge in PGS is straightforward, which we will
make use of here.

In the next section, we provide the rationale for the choice of the domains used for
the evaluation of the model. Subsequently, we will describein detail the methodology
that guided the experiments (Section 5.2). We will present and discuss results sepa-
rately for the chosen domains in Sections 5.3 and 5.4. This chapter is concluded with
a short summary (Section 5.5).

42
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5.1 Domain choice

Estimating the plan reuse and performance of agents reliably requires that experiments
are repeatable in a controlled way. Valid conclusions cannot be drawn from a single
observation alone. Moreover, testbeds need to be free of external influences in order to
facilitate the analysis. For these reasons, experiments are conducted usingtoy domains
rather than real-world problems. This allows the explicit setting of test parameters
and the controlled measurement of the variables under observation, which simplifies
reasoning about results significantly.

The value of executing a plan as generated by PGS depends on the uncertainty in
the domain, which is according to Decker (1995) comprised ofthe uncertainty about
changes in the environment itself, about other agents’ actions, and about the outcomes
of actions. The predictability of the results of a sequence of actions decreases with
its length and the uncertainty of the domain. This is a serious problem for classical
planning. If a goal is supposed to be reached by a single plan,this plan has to account
for all possible uncertainties it could encounter during its execution. The extreme case
is a completely randomly behaving domain, in which the best policy is necessarily
restricted to look ahead only a single step. In that case, temporal knowledge cannot
be of any value. We seek to study the feasibility of PGS in domains of varying
uncertainty and thus varying degrees of realism. This enables a reasonably thorough
analysis of the architecture’s value. However, to render plan reuse useful at all, the
domains studied here exhibit certain temporal patterns, which can indeed be covered
by temporal knowledge. This is supposed to shed more light onthe advantages and
disadvantages of temporal abstraction in general.

The first test bed is thepursuit domain, which was originally defined by M. Benda
and Dodhiawala (1986) and has since been studied in various configurations (Stone
and Veloso, 2000). In this domain, four predators seek to hunt down a prey on a grid
without explicitly coordinating their actions. In order towin, the predators have to
surround the prey. In the original task, the prey was moving randomly. Here, we vary
its behavior from random to deterministic in order to study the impact of determinism.
This domain hence covers two of the three factors of uncertainty defined by Decker:
uncertainty about the environment and uncertainty about other agent’s actions. The
task is reasonably complex to be interesting because it waives one of the strong
assumptions made in classical planning that the world is only changing due to the
agent’s own actions (Ghallab et al., 2004). It is generally amenable to the application
of PGS because subgoals in the definition of PGS can simply be specified for the
problem. Because the state space of this problem is large, state abstraction needs to
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be applied, which renders plans reusable in different situations. This allows us to
study the impact of plan reuse on the agent’s exploration, with plans being learned or
specified a priori.

In the second domain, thetaxi domain, an agent is supposed to pickup a passenger
at a certain position on a grid and deliver her to a particulardestination. The problem
has been studied frequently in literature on temporal abstraction because it exhibits
distinct states that can be identified as subgoals easily (e.g. Dietterich, 1998; Parr and
Russell, 1998; Özgür Şimşek et al., 2005). However, PGScannot clearly be configured
for this domain as we will see later. This allows us to demonstrate the inherent
restrictions of the approach. However, we will modify the PGS model in order to
record and reuse action sequences at least. The problem neither exhibits uncertainty
about the environment nor about other agents. We also refrain from adding uncertainty
about the agent’s own actions. Hence, the advantage of plan acquisition and execution
should become even more evident than in the pursuit domain.

5.2 Methodology

In both domains, agents have to reach a goal within a particular number of steps.
We seek to evaluate the impact of deploying PGSon the reinforcement learner’s initial
exploration or learning phase. To assess performance, mainly the following dependent
variables are observed during the experiments and considered in the discussion:

Steps The average number of steps that the agents need to reach their goal indicates
their performance, with better performing agents requiring less steps. This is
a more informed indicator for performance than the ratio of trials in which the
agents reached their goal successfully. As opposed to success rate, it does not
depend on the maximum number of steps allowed per trial, which itself is a
parameter to the system.

Decisions The average number of decisions indicates the computational costs ex-
pected to be spent on reasoning. In this work, we are primarily interested in
situated, resource-bounded agents. They need to restrict costly decision-making
in order to obey time-constraints. Minimizing decision-making is a goal of the
extensions to PGS introduced in this thesis. The number of decisions directly
depends on the following two variables because no decisionsare to be made
while following a plan.
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Plan length The average length of executed plans indirectly indicates the benefit of
using PGS. If plans are rather short, the number of decisions can hardly be
reduced and PGS itself becomes obsolete. Therefore, this number is sought to
be maximized here.

Plan use The ratio between actions entailed by the use of plans and low-level actions
determines the amount of time in which PGS has the control over the agent.
Since more plan reuse generally implies less decisions to bemade, this variable
is also to be maximized.

Because there are strong relationships between these variables, we will seek to
discuss them concurrently during the experiment analysis.Other experiments will
be conducted to support or explain these primary results.

Each experiment configuration is run for a certain number of trials, with each trial
running until the agents reached their goal or the maximum number of steps was
executed. A certain turn in the concatenation of trials is called a sequence, thus
uniquely identifying a certain time point within the entireexperiment. Considering
that a trial runs for at most 150 steps and a certain number of trials n is performed for
every experiment, there are at most 150×n sequences in an experiment.

Statistics are calculated after every 100 trials and valuesaveraged over these 100
trials. This enables studying the trend of performance, in which we are particularly
interested. Each experiment configuration is executed 30 times with different, ran-
domly determined initial situations for every trial. However, all configurations share
the same sequences of initial situations. This allows to estimate confidence intervals
and enables statistically valid comparisons of configurations. Significance tests are
conducted at a confidence level of 0.95 withWelch’s t-test, which does not require that
the two samples to be compared exhibit equal variances. We assume that a sample size
of 30 is sufficient to expect a normal distribution for the sampling distribution of the
mean (Cohen, 1995). Detailed statistical results will be reported during the discussion
for those results that are not obvious from the figures. Confidence intervals are drawn
on most of the line graphs. For some points they are too small to be visible, though.

The results presented in this chapter are not likely to hold for every kind of domain.
They might vary quantitatively or even qualitatively. We will thus point out restrictions
and assumptions of the experiments conducted here that should be considered by the
reader. Additional domains were not examined because of time-constraints.
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5.3 Pursuit domain

Thepursuitor predator-preydomain is one of the original testbeds of PGS. Parameters
and domain rules were mostly retained from previous work (Karim, 2009). In the
pursuit domain, four predators seek to chase down a prey on a non-toroidal grid (13×
13 tiles). Learning is only implemented for predators. The simulation is time-discrete:
Each predator can chose to move up, down, left or right once every time step. The
prey, in contrast, only moves every second step. The predators win if they manage to
surround the prey on its north, east, south and west side at the same time. The prey
wins if it reaches any of the boundaries or if the maximum number of steps (here 150)
is exceeded. The predators start at different random positions on the board in each
trial.

The following three different types of prey are deployed:

Deterministic circle prey This prey starts at the upper right corner and runs anti-
clockwise along the largest square on the grid that does not touch any of the
boundaries. Its path is depicted in Figure 5.1a. The prey freezes as long as any
predator is blocking its way. It is obvious that this prey cannot win by its own
effort because it never reaches a boundary.

Nondeterministic circle prey This prey follows the same rules as the deterministic
circle prey but randomly leaves its trajectory. The prey hasa 60% chance in
each turn of moving off its track one step towards the grid’s center and following
the same movement pattern there. It has a 30% chance of movingback to its
original path. The path of this prey is depicted in Figure 5.1b.

Random prey This prey starts each trial randomly on one of the four tiles at the
upper left corner of the grid’s center and from there on only takes random steps.
It is the only prey of these three that has a chance of winning by reaching a
boundary.

These prey types vary with regard to their predictability, which will allow us to
make statements about the value of plans given different degrees of uncertainty in the
environment. If not mentioned differently, the deterministic circle prey is used for all
experiments. Considering that predators have to implicitly coordinate to surround the
prey simultaneously, this task is already reasonably complex. However, the problem is
simplified by an immediate reward being available for every step, as we will see later.
In fact, this is a major simplification of the reinforcement learning task. Nevertheless,
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(a) deterministic (b) nondeterministic

Figure 5.1: The unique path of the deterministic circle preyand a possible path of the
nondeterministic one.

this problem, which is sometimes calledimmediate reward learning, has often been
studied in literature (Schuurmans and Greenwald, 1999). Another reason for using the
pursuit domain as a testbed for PGS is that subgoals can be defined quite clearly. In
that, the domain can serve as a first presentation of a properly deployed PGS.

Next, we will describe the configuration of the predators. Subsequently, we will
present and discuss the experiments. Those are divided intothe following parts:

• Control experiments with basic configurations, which explore the inherent char-
acteristics of PGS (Section 5.3.2).

• Prior knowledge experiments, which investigate the impactof integrating prior
knowledge into the predators (Section 5.3.3).

• Further experiments, which complement and enrich the otherexperiments (Sec-
tion 5.3.4).
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5.3.1 Predator configuration

The predator setup requires the bottom-level reinforcement learner and the top-level
PGS module to be configured, both of which are described in this section.

Configuration of the reinforcement learning modules

Each predator is driven by a reinforcement learning module provided by a system
called FALCON, “a Fusion Architecture for Learning, COgnition, and Navigation”
(Tan, 2004). For this work, the exact definition of FALCON is not essential. It is
enough to note that it applies standard Q-learning with an additional scaling term
(1−Q(s,a)) in order to provide a smooth normalization of the Q-values and to restrict
them to the interval[0,1] ∈R (Tan, 2007):

Q(st ,at)←Q(st ,at)+ α[rt+1 + γmax
a∈A

Q(st+1,a)−Q(st ,at)](1−Q(s,a)) .

The learning parameters are the same as in Tan (2004). The Q-learning parameters,
however, are set as follows:ε = 0.6,α = 0.5,γ = 0.01. ε is decreased by 0.0006
after every trial. These parameters were taken from previous work and have proven
to perform well. The decrease ofε was changed to 0.0004, though. We refrained
from further cumbersome search for optimal learning parameters apart from testing
some minor variations (see Figure 5.2). The configuration described here turned out
to be the best one as for long term performance and performance during exploration
with regard to the average steps needed to catch the prey. We will show later that
our claims also hold for a configuration that does not reduceε but that relies on the
following fixed values frequently used in literature:ε = 0.1,α = 0.05,γ = 0.9. This
latter configuration shows the best performance during initial exploration (see Figure
5.2). However, it does not reach optimal performance in the long run because it does
not cease to take exploratory actions. In fact, however, it is a more realistic setting
because it does not rely on information being available about the time needed for the
reinforcement learner to converge to an optimal policy. This knowledge would usually
not be available to an agent designer.

FALCON itself does not employ any function approximation for stateabstraction.
However, the original state space is large. For a 13×13 tiles grid and 5 agents, there
are(13×13)5 ≈ 1.38×1011 possible states. It would take the predators a long time
to fill a table-based Q-function and converge to the optimal policy. To render the
problem solvable, the state information passed to every predator is restricted to only
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Figure 5.2: Performance of different Q-learning parametersettings for FALCON in
the pursuit domain. For the fixed exploration rate, parameters are:
ε = 0.1,α = 0.05,γ = 0.9. For the decreasing exploration rate, initial
parameters are:ε = 0.6,α = 0.5,γ = 0.01, withε decreasing after every
trial by the amount in brackets.
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two parameters. One is an indicator for thebearingof the predator towards the prey. It
can take eight different values corresponding to the main points of the compass. The
other one is theexposureof the prey, which determines how well the prey is covered by
the predators. It can take four values which gradually rate the exposure. It is defined as
the number of sides (north, south, east, west) of the prey that are not occupied by any
predator. Predators at intermediary directions such as north-west count both for the
northern and western sides. If all predators, for example, are located on tiles directly
above the prey, the exposure is 3. If all tiles directly adjacent to the prey are occupied
by predators, the exposure is 0. This abstraction reduces the state space to 8×4 = 32
possible states.

Rewards are provided to a predator after every action and liein the range[0,1] ∈R.
They depend on the change of distance and exposure between the situation in which
the action was performed and the situation in which the action resulted. Minimizing
the distance between each predator and the prey is obviouslya necessary condition
for catching the prey. It is, however, not a sufficient one. Inorder to win a trial,
the predators also need to cover the prey such that it cannot move anymore. This
is reflected by the second factor in the reward stimulus – the change of the prey’s
exposure. The rewardr for a certain predator at time stept given the distanceds

between predator and prey and the exposurees at time steps is as follows:

r =































1.0 if the prey is captured,

0.8 if et < et−1∧dt < dt−1,

0.6 if dt < dt−1,

0.4 if et < et−1,

0.0 otherwise.

Configuration of the PGS modules

The PGS module of the hybrid architecture is configured as specified in Section 3.4. It
is equipped with the following two subgoal-clue tuples, which naturally follow from
the problem and the reward definition:

1. Subgoal: Minimize distance.
Clue: An action is moving the predator towards this subgoal if it reduces the
distance between the predator and the prey.
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2. Subgoal: Minimize exposure.
Clue: An action is moving the predator towards this subgoal if it increases the
predators’ coverage of the prey.

Note that these subgoals make use of the same domain knowledge as the reward
calculation. Hence, they do not require any additional prior knowledge assuming that
the reward definition is provided by the agent designer anyway. Actions are attached
to a currently recorded plan as long as they move the agent towards the plan’s subgoal
and towards Q-values larger than that one of its first step. This conforms to the default
implementation. The minimum length of plans to be activatedis two steps. Hence, no
knowledge about the domain that is not known to the reinforcement learner anyway
has been exploited so far.

5.3.2 Control experiments

We first demonstrate that the adoption of PGS itself without any additional prior knowl-
edge in this domain already leads to improved performance, indicated by the observed
variables that were identified in Section 5.2. The followingpredator configurations are
evaluated:

CNTL-0 A plain FALCON setup as described above.

CNTL-1 A setup with FALCON and PGS, where the latter applies a fully informed
state description that consists of the exact positions of all agents on the grid.
This is the configuration of original work on PGS.

CNTL-2 A setup with FALCON and PGS, where the latter applies the same gener-
alized state description as the former, namely a tuple of exposure and bearing.
Note that this PGSconfiguration does not require any additional knowledge that
is not available to FALCON. Also the subgoal-clue tuples do not require any
prior knowledge as discussed in the previous section.

From Figure 5.3, it is obvious that overall plan reuse forCNTL-1 is low and that
the number of steps and decisions never deviates significantly from CNTL-0. In fact,
the difference in steps and decisions is too small to be visible on the graphs. In
contrast,CNTL-2 requires significantly less steps to be taken for the learning phase
thanCNTL-0.1 Moreover, it requires significantly less decisions to be taken throughout

1The difference is statistically significant until trial 1,100 and for some scattered measuring points later
with p < 0.05.
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Figure 5.3: The performance of basic predator configurations in the pursuit domain.
Values are averaged over the most recent 100 trials.
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almost the entire experiment.2 However, the differences are rather minor. Around 15%
of the actions performed byCNTL-2 are due to plan execution, which is a significant
difference to the plan reuse ofCNTL-1. Likewise, the average length of executed plans
for CNTL-2 increases gradually until it levels off at about 3.5 steps.

Plan use forCNTL-1 is low because its state space is very large and a particular situ-
ation unlikely to occur twice. Hence, its behavior does not deviate significantly from
CNTL-0 because mostly actions proposed by the reinforcement learner are performed.
In case ofCNTL-2, the state space is mapped to a set of only 32 states, such that
significant plan reuse can indeed be observed. This configuration outperforms both
former significantly with regard to the average number of steps performed, especially
during the learning phase until convergence to a stable performance. We claim that
this is due to more plans being executed and due to their execution guiding the agent
procedurally. An action sequence that was successfully applied in a particular state is
likely to be successful in a different but similar state. Furthermore, the average length
of executed plans forCNTL-2 is significantly longer than the minimum plan length
of 2. This represents a major improvement over previous results, in which most plans
only consisted of one step.

These observations show that PGS, after re-engineering, is in fact able to reuse
plans sensibly, in that it does use a significant amount of plans without reducing its
performance. The execution of plans leads to significantly less steps needed to catch
the prey even though (a) PGS relies solely on the bottom-level module for knowledge
acquisition and (b) it records plans while the bottom-levelmodule has not converged
yet. The number of decisions is related to the average numberof steps and average
plan reuse as reasoned previously. Therefore, this performance measure also benefits
from adopting PGSon top of the plain reinforcement learner. The number of decisions
for CNTL-2 is significantly lower than forCNTL-0 and hence computational costs are
saved. However, the advantage gain over the number of steps is minor because plan
reuse in general is still only about 15% forCNTL-2.

One could argue that the improvements in learning time indicated by the aver-
age steps needed to catch the prey could have possibly been achieved by tuning the
FALCON module itself. We cannot disprove this claim because we refrained from
optimizing the 13 real-valued parameters apart from what isdepicted in Figure 5.2.
Note that the PGS configurations introduced above, in fact, do not require anyprior
knowledge. It can be concluded that PGS by itself can be a valuable addition to a

2The difference is statistically significant for all measuring points apart from those at trials 2,500 and
2,700 withp < 0.05.
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Figure 5.4: The ration of plans recorded in a specific time interval and reused in
another specific time interval forCNTL-2.

reinforcement learning algorithm as a substantial improvement for learning time. This
should especially be valuable if a function approximator isused to represent the value
function. Function approximators usually come with a larger number of additional
parameters to be considered for optimization. It is surely worthwhile to save time on
this possibly cumbersome effort. Nevertheless, we note that observations could result
from the specific task definition used here alone.

Still, there is surely space for further improvements. One of these arises from a
closer observation of the relationship between recording time and execution time of
plans. Figure 5.4 depicts the ratio of plans recorded in a specific time interval of the
experimentsand reused in another specific time interval. On both axes, the graph
shows the sequences3 of CNTL-2. Both scales are split into 20 equally large intervals.
Each of the shaded boxes belongs to a certain combination of two of these intervals.
The color of a box indicates the ratio of plans that were (a) recorded in the time interval
denoted by the position of the box on the y-axisand (b) reused in the time interval

3As explained in Section 5.2, a sequence is a particular turn in the concatenation of all trials that were
run in an experiment.
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denoted by the position of the box on the x-axis. Darker values correspond to a larger
number of plans for that interval combination. For example,the sixth box from the left
indicates the ratio of plans that were recorded roughly between sequence 80,000 and
100,000 and were reused sometime later in the same interval.The data was generated
for the conjunction of all 30 experiment runs.

In Figure 5.4, there are only shaded boxes on the main diagonal. That means that
plans were never reused in another time interval than in thatin which they were
originally recorded. In that, only recently recorded plansare reused throughout the
entire life cycle of the predators. This means that plans in general do not have a long
life time, not even after the reinforcement learner has converged to an optimal policy.
Then at the latest, PGS should, in fact, start recording plans that are effective inthe
long run. We assume that the plan confidence update as well as the plan selection
mechanism require improvement in order to allow useful plans to reside in the plan
libraries for a longer time. We reason that the state description used inCNTL-2 is too
abstract. Obviously, it does not capture all relevant stateinformation. For example, the
positions of other predators are not accounted for at all. This renders a plan reusable
in a number of situations, in which its application is actually not worthwhile. This
will lead to the plan being executed in an inappropriate situation soon, thus resulting
in a negative confidence update early. In general, more sensible plan selection can be
expected to lead to a more efficient plan reuse. Such improvements might also lead
to increased plan length and plan reuse growing over time, which cannot be observed
yet. They will be – amongst others – the topic in the followingsubsection.

5.3.3 Integrating prior knowledge

In Section 3.5, we identified four distinct parts of the PGS algorithm that we consider
amenable to the integration of prior knowledge. We decided to investigate two of
these in detail: One of them concerns the selective reuse of plans while the other one
concerns the prior content of the agent’s plan libraries. Both are to be evaluated in this
section.

Guiding the plan selection

So far, PGS was restricted to the same state description that FALCON applies in order
to show that it is a valuable addon in this domain without exploiting any inherent
advantage. The usefulness of plans, however, is more closely tied to their specific
context condition than is the usefulness of a single action as already noted by Jong
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et al. (2008). Hence, it is of interest to apply a more fine-grained state description and
thus to achieve a more sensible plan reuse. A fully descriptive state, however, cannot
reasonably be adopted because in more realistic state spaces it is very unlikely that
a certain situation exactly occurs again. As recognized before, this already holds in
the pursuit domain as well. Therefore, methods of state abstraction should be applied
in order to enable a proper reuse of plans. It is not the intention of this work to
discuss this field but rather to show that PGSexposes a convenient hook for integrating
knowledge about state similarity into the plan selection process.

We implemented three simple state abstraction mechanisms that guide the decision-
making in the plan selection process on whether a certain plan is applicable in the
current situation. The first approach, later referred to asSTATE-0, is based on a
fully informed state description consisting of the exact positions of all agents. We
assume that different features in the state description areof different importance for
decision-making. For example, in order to reuse a plan in a certain situation, it is less
important that the positions of other predators match the original precondition than
that the predator’s own and the prey’s position match with the original precondition.
To implement this idea, we slightly altered the definition ofconfidence as introduced
in Chapter 3. A plan’s confidence is now also defined for statessimilar to the original
precondition, with similarity holding if:

• the Manhattan distance between the predator’s actual position and its position
in the plan’s precondition is smaller than 3, and

• the Manhattan distance between the prey’s actual position and its position in the
plan’s precondition is smaller than 3, and

• the sum of Manhattan distances between all other predators’actual positions
and their positions in the plan’s precondition is smaller than 6.

The second state abstraction approach, which we will refer to asSTATE-1, requires
a more detailed introduction. It also relies on a redefinition of the confidence of a plan
but is only based on the abstracted state description used inCNTL-2. From a domain-
expert’s point of view, states are similar if they exhibit similar values for exposure
and bearing. To make use of that knowledge, we define the confidence value of a
plan as a two-dimensional, asymmetric Gaussian in the statespace with its center at
the plan’s context condition. Note that this is reasonable here because similar states
are indeed defined by similar numerical values in the state description. This approach
allows the agent to have the most confidence in reusing a plan if it finds itself in
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Figure 5.5: Illustration of the Gaussian state abstraction. This example shows a two-
dimensional state space and the Gaussian confidence of a planvisualized
by a contour plot. For different directions from the center of the plan’s
precondition, different confidence values apply. For example, the plan is
more likely to be reused in states with smaller x- and y-values than with
larger ones.

the same situation as during plan recording. It is somewhat inspired by radial-basis-
function networks, which typically map an input vector to a number of Gaussians,
thus defining its membership to the clusters or classes described by these Gaussians
(Moody and Darken, 1989). The idea is illustrated in Figure 5.5. It leads to the
following definition for a plan’s confidence:

Definition Let x be the state vector for the current situation,µ the state vector for
the plan’s precondition, andΣ−1 a placeholder for two different covariance matrices
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(entries unequal to zero only on the main diagonal), one of which is applied ifxi < µi

and the other elsewise, then

confidence= amplitude×exp

{

−
1
2
(x−µ)T

Σ
−1(x−µ)

}

determines the confidence in executing the plan in situationx.

It is obvious that the update rule for reinforcing and penalizing the confidence of
a plan has to be adjusted. The calculation proposed relies onthe assumption that a
successful or unsuccessful execution of a plan should have atwo-fold implication:
First, it should reinforce or penalize the overall confidence in the plan. Second, it
should reinforce or penalize the confidence in applying the plan in situations similar
to this execution. An execution further away from the original precondition should
have a larger impact on theGaussian’s variancesof dimensions in which it differs
from the plan’s precondition. An execution of a plan in a situation rather similar to its
precondition, in contrast, should have a larger effect on the overall confidence in the
plan, represented by theamplitudeof the Gaussian. The update rule for incrementing
the confidence is presented in Algorithm 3. The decrement rule is similar. A con-
fidence update basically generalizes or specializes the application context of a plan.
This is similar to the rule refinement at the top-level modulein CLARION (Sun et al.,
2005). If a plan execution achieves a reward that is larger than that one gained when it
was recorded, the precondition of the plan is changed to the more successful situation.

Note that there is no learning rate. This turned out to yield better results in this
domain. Yet, it should generally lead to an adverse, oscillating behavior because a
predator would repeatedly try a plan in a situation more different from its original pre-
condition even though that one was already found unsuitable. The Gaussian amplitude
of every plan is initialized with 1 and the variances with 10.The former reflects the
assumption that initially the confidence in the plan’s valueis absolute. The latter was
chosen because it yielded the best results.
STATE-1 relies on the imprecise exposure-bearing state description. We expect

that a more informed description can lead to a further improvement of plan reuse.
Hence, we define another experiment,STATE-2, in which the Gaussian approach as
described above is applied to the exact state description consisting of the positions
of all agents, which is also used byCNTL-1. Obviously, similar numerical values for
a certain dimension correspond to similar positions and hence similar states, which
renders the Gaussian state abstraction suitable to this state description. The Gaussian
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Algorithm 3 The reinforcement method for plans with Gaussian confidence

Require: The real-valued vectornewSituationdescribing the situation for which to
test the confidence in applying this plan and the real-valuedvector precondition
of same length describing the situation in which the plan wasrecorded.

1: amp= confidence(newSituation)
confidence(precondition)

2: var = 1.0−amp
3: amplitude= min(1,amplitude+ amp)
4: for i in [0..(length(newSituation)−1)] do
5: if preconditioni > newSituationi then
6: ∑−1

l ,i,i := ∑−1
l ,i,i×e−var

7: else
8: ∑−1

r ,i,i := ∑−1
r ,i,i×e−var

9: end if
10: end for

amplitude of every plan is initialized with 1 again but variances with 0.5. The latter
was found to be reasonable in exploratory experiments.

The performance ofSTATE-0, STATE-1 andSTATE-2 in comparison toCNTL-0 and
CNTL-2 is shown in Figure 5.6. It is obvious that the number of steps and decisions
for STATE-0 does not deviate significantly fromCNTL-0. In fact, the difference is
too minor to be visible clearly. ForSTATE-1 and STATE-2, however, a significant
improvement in the average number of steps can be observed for the learning phase.4

The improvement in the number of decisions is eminent throughout the entire exper-
iment.5 STATE-0 shows hardly any plan reuse at all whileSTATE-1 and especially
STATE-2 show a significant plan reuse throughout all times of the experiments. For
both configurations, plan reuse starts with optimistic values that slightly decrease.
It levels off at around 30% forSTATE-1 and around 38% forSTATE-2. Average
plan length converges to about 2.3 for both configurations that apply the Gaussian
abstraction. It converges to about 3.5 for those configurations that apply the exposure-
bearing state description.

We conclude that the general performance ofSTATE-0 is not significantly different
to that of CNTL-0 because hardly any plan reuse is observed. Hence, there is no
improvement overCNTL-1 with regard to plan execution. In contrast, dynamically

4For STATE-1, the improvement is statistically significant for the first 900 trials with p < 0.05. For
STATE-2, it is significant for the first 700 trials.

5The improvement is statistically significant withp < 0.05 for all measuring points.
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Figure 5.6: The performance of basic predator configurations and configurations that
apply state abstraction in the pursuit domain. Values are averaged over the
most recent 100 trials.
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adapting the conditions under which a plan is applicable seems promising. The results
for STATE-1 andSTATE-2 show a large improvement especially in plan reuse, which,
in turn, leads to a shortened exploration phase. This supports the claim that exploration
can be guided by a proper reuse of plans. However, plans inSTATE-1 still do not have
a long life time as can be seen in Figure 5.7a. As reasoned previously, we assume this
to be a general problem of the abstraction degree of the exposure and bearing state
description.

However, in Figure 5.7b, there are not only shaded boxes on the main diagonal for
STATE-2. For most of the boxes on the main diagonal, there are also three or four
boxes shown for later intervals on the x-axis but for the sameinterval on the y-axis.
That means that plans in general are not only reused in the very same interval they
were recorded, but also in three or four later intervals. Still, plans show the largest
reuse more recently after their recording, which can be inferred from the fading colors
of boxes at later execution intervals. Obviously, the likelihood of a plan to be reused
decreases with its age. Nevertheless, plans forSTATE-2 have a generally longer life
time than plans forCNTL-2 andSTATE-1. We argue that this is caused by their usage
of a more informed state description. The state descriptionleads to plans being less
often reused in situations majorly different from the plan’s original and successful
recording than is the case for less informed and more abstract state descriptions.

Priming the plan library

The intention of the second prior knowledge extension is to decrease the number of
average steps required instead of increasing plan reuse. Weprimed the predators’ plan
libraries with the following two different prior plans in separate experiments. Both
plans make use of the fully informed state description and exploit insight knowledge
of the path of the prey. They make use of the weakness of the prey that it only moves
if it can follow its deterministic path. If a predator blocksthe prey’s way, the prey
simply does not move in that turn.

PRIOR-0 This plan has a very high confidence if the predator is the onlyone on
the prey’s path. In that case, it basically overrides the low-level behavior and
does not move anymore. The predator will block the prey, onceit is eventually
reached by it. That makes surrounding the prey easier for thepredators.

PRIOR-1 This plan has the same activation condition asPRIOR-0 but it calculates a
plan that moves the predator towards the prey along its trajectory. The predator
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Figure 5.7: The number of plans recorded in a specific time interval and reused in
another specific time interval forSTATE-1 andSTATE-2.
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freezes once it stumbles upon the prey. It will basically lead to a blocking
position earlier.

Neither of these plans is reinforced nor penalized because we wanted to encourage
their reuse solely for the sake of a faster learning time. It would be generally possible,
though, to “unlearn” such prior plans once they turn out to lead to worse results than
the reinforcement learner would achieve. This is the actualpurpose of the update of
the plan’s confidence. Note that explicit communication forboth plans is not neces-
sary. The activation is only triggered on the basis of the other predators’ positions. For
both experiments, the state abstraction for all other learned plans isSTATE-1 because
it exhibits the best performance with regard to the average steps. The indicators for
plan reuse, plan length and number of decisions are less interesting here because plan
reuse is artificially boosted. Hence, we compare the averagenumber of steps between
theSTATE-1 configuration and both prior knowledge configurations (see Figure 5.8).

It can be seen that predators applying these prior knowledgeplans require less steps
than previous configurations during the crucial learning phase. However, as soon as
the other configurations reach a better policy, this advantage turns into a disadvantage.
This underlines the need for a possibility to “unlearn” prior knowledge. This is in
line with the results of McGovern et al. (1997) who observed that the influence of
prior knowledge macro-actions or plans can be adverse or supportive depending on
their quality. The initial speedup observed here might seemobvious because we
“told” the predators how to solve the problem but it has to be emphasized that only
very little knowledge was injected to the system. In fact, the task requires four
predators to implicitly coordinate their actions to reach their goal. We only provide
them with a hint about the prey’s behavior, which had a large impact on their initial
performance. Moreover, to specify this plan requires much less effort than tweaking
the reinforcement learner’s parameters and Q-value initializations to achieve the same
behavior. It should become clear from this example that adding knowledge to a
reinforcement learner in a higher-level language might be valuable and is worth further
investigations.

5.3.4 Further considerations

We conducted further experiments, three of which we consider to be of interest here.
The first one addresses the question of what are the advantages the reinforcement
learner gains from plan execution. The second one specifically investigates the influ-
ence of varying degrees of uncertainty in the environment onthe benefit of deploying
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Figure 5.8: The average number of steps of previous predatorconfigurations and
configurations that are supplied with prior knowledge plansin the pursuit
domain. Values are averaged over the most recent 100 trials.

PGS. The third one applies PGS to a FALCON module that uses alternative Q-learning
parameters to support our results.

The impact of plan execution on the reinforcement learner

We saw previously that applying PGS has a positive influence on the performance of
the predators. We also noted in Section 3.4 that FALCON is in fact learning during the
execution of plans. Hence, we hypothesize that its value-function benefits from a pre-
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Figure 5.9: The average number of steps of various predator configurations with PGS

switched off after 600 trials in the pursuit domain. Values are averaged
over the most recent 100 trials.

vious application of plans. To test this hypothesis, we deployedCNTL-2, STATE-1 and
PRIOR-1, and switched the PGSmodule off after 600 trials such that from then on only
the FALCON module was working. According to our assumptions, the performance
of these predators should still outperformCNTL-0 – the plain FALCON configuration.
The values for average steps are shown in Figure 5.9. The average steps needed for
the PGS configurations is significantly smaller than forCNTL-0 but only until the PGS

modules are switched off.
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The simulation results do not support our hypothesis – none of the PGS configura-
tions exhibits a better performance thanCNTL-0 after the application of plans. Surely,
a problem in the implementation cannot be ruled out. However, Dixon et al. (2000)
provide an explanation for this observation. They note thata reinforcement learner
needs to be able to represent the knowledge that is transferred from another controller,
which is in this case specified by plans. Two factors need to beconsidered:state-
space deficiencyandrepresentational deficiency. The first one denotes the failure of
a reinforcement learner to benefit from prior knowledge thatapplies a more powerful
state description. In fact, this holds forSTATE-1 and PRIOR-1 because the state
description originally introduced forSTATE-1 is more powerful than that ofCNTL-0. A
reinforcement learner suffers from a representational deficiency if its decision-making
is not powerful enough to represent that one used by the injected prior knowledge.
This especially holds forPRIOR-1, whose execution follows comparably complex
rules. In fact, actions in any plan are selected based on the original decision to execute
the plan. This means that decision-making waives the Markovproperty, which the re-
inforcement learner, in contrast, assumes to hold. Hence, we can assume that the rein-
forcement learner cannot learn from any plans in the above mentioned configurations.
All speedup observed previously is thus only a result of interrupting the execution of
the reinforcement learner’s policy. The advantage of temporal abstractions reported
by McGovern et al. (1997) cannot be achieved here because theagent’s reinforcement
learner does not backup Q-values from the plans’ last statesto their first ones. Only
intermediary one-step standard Q-learning propagations are performed. Nevertheless,
the general speedup observed here is real even though it doesobviously not affect the
reinforcement learner.

The impact of varying uncertainty on the benefit of plan reuse

In the experiments presented previously, the advantage of the PGS configurations to
the FALCON-only one varies with the availability and quality of prior knowledge as
seen when priming the plan library as well as with plan reuse in general. In the case of
prior knowledge plans being used, the advantage later turnsinto a disadvantage. We
reasoned previously that the success of plan execution alsodepends on the predictabil-
ity of the environment. In contrast to plans, open-loop policies can regularly sense the
environment and decide on a new course of actions, which gives them an advantage
when coping with uncertainty in the environment. Constant sensing and reasoning,
however, might not be possible in resource-bounded agents that are required to behave
in a reactive manner. A closed-loop policy such as a plan, in contrast, commits to
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(a) Deterministic circle prey
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(b) Nondeterministic circle prey
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(c) Random prey

Figure 5.10: The average number of steps ofCNTL-0 and STATE-1 for different
degrees of predictability of the prey in the pursuit domain.Values are
averaged over the most recent 100 trials.
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multiple actions at once and follows this decision blindly.It saves the agent resources
for other purposes than reasoning.

This lets us assume that if the prey exhibits a less predictable behavior than consid-
ered previously, we expect plans to be less effective. In theend, it becomes less
likely that a previously successful action sequence is valuable again. To test this
hypothesis, we deployed the three prey types that are described in Section 5.3 and
that vary with regard to their predictability. For each of them, we compared the
FALCON-only configuration (CNTL-0) with the PGS one that applies a Gaussian state
abstraction on the exposure-bearing state description (STATE-1). We hypothesize that
the benefit of adopting PGS additionally to a reinforcement learner is proportional to
the predictability of the prey with regard to the average steps needed to catch it.

The results are shown in Figure 5.10. Indeed, the advantage of the hybrid approach
over the FALCON-only model varies with the degree of predictability of the prey. The
more predictable the prey behavior is designed, the larger is the overall advantage of
the hybrid approach. It is noteworthy, though, that the performance advantage gained
by adopting PGS is almost as large for the nondeterministic circle prey as itis for
the deterministic one. This lets us assume that plans can even provide guidance and
partial solutions if the behavior of the environment is not completely predictable.

Hence, we can identify three factors that affect the advantage of the hybrid approach
over the pure reinforcement learner: The first one concerns the amount and quality of
prior knowledge added to the system, the second one relates to the degree of uncer-
tainty in the environment, and the third one to plan reuse in general. A fourth factor
of more theoretical nature shall be mentioned briefly. In every step, the FALCON-only
predators have to sense the environment and come to a decision on which action to
take next. There are, however, domains that require a highlyreactive behavior. In that
case, constant sensing and reasoning would not be possible.Making a decision might
then have a cost that exceeds that one for taking an action. Ifsuch a cost was reflected
in the model, the advantage of the hybrid approach would be increased. In contrast,
if taking an action was considered to be potentially expensive compared to making a
decision, the advantage would be decreased.

Alternative FALCON parameters

Finally, we show that qualitatively similar results for theexperiments above can be
obtained with more realistic Q-learning parameters that donot depend on knowledge
about the convergence time of the reinforcement learner. These areε = 0.1,α =
0.05,γ = 0.9, with ε being fixed. A comparison ofCNTL-0, CNTL-2, andSTATE-1
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for these parameters is given in figure 5.11. Obviously, the learning speedup as for the
average number of steps needed is less substantial than for previous results.6 However,
with plan reuse and plan length being considerable, the improvement in the number of
decisions is still significant.7 STATE-1 does not show a larger plan length thanCNTL-2
and even has a smaller plan reuse. This is contradicting previous observations. As of
the time of writing, we do not have any explanation for this observation.

5.4 Taxi domain

The taxi domain, which is a 5×5 tiles gridworld, is illustrated in Figure 5.12. A taxi
agent starts at a random position on the grid in each trial. A passenger appears at one
of four distinct locations and seeks to go to one of these fourlocations. Her initial
location and destination are determined randomly for everytrial. The taxi agent has to
learn to pickup the passenger and deliver her to the destination within a certain number
of steps (here 80). In each turn, the taxi can take a step north, south, east or west or
pickup, or unload the passenger. As can be seen in the figure, there are barriers on
the grid which cannot be passed. This makes the task more difficult on the one hand,
but provides for distinct subgoals on the other. All traffic between locations on both
halves of the grid has to pass the central tiles, which therefore obviously become
bottleneck states. Moreover, no trial can be successful without solving the following
two subtasks: navigating to the passenger and picking her up, then navigating to her
destination and unloading her.

Research in option discovery has studied this domain to evaluate algorithms that
identify such subgoals autonomously (see Section 2.1.3). The task was originally
defined by Dietterich (1998). It has since been used in a number of hierarchical
reinforcement learning studies (e.g. by Parr and Russell (1998), Andre and Russell
(2002) or Özgür Şimşek et al. (2005)).

The notion of subgoals is also related to PGS. However, we have noticed in Section
3.3 that this follows a different idea, which makes its application in the taxi domain
particularly difficult. Plan recording relies on continuous feedback about the value of
actions taken. In the pursuit domain, for example, an actionwas attached to a plan if
it reduced the exposure of the prey or the distance between the predator and the prey.

6For CNTL-2 andSTATE-1, the improvement is statistically significant for the first 200 trials withp <

0.05. ForSTATE-1, it is also significant for the trials 600 to 1,200.
7Both for CNTL-2 andSTATE-1, the improvement is statistically significant for all measuring points

with p < 0.05.
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Figure 5.11: The performance ofCNTL-0, CNTL-2, and STATE-1 for alternative Q-
learning parameters in the pursuit domain. Values are averaged over the
most recent 100 trials.
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Figure 5.12: The taxi domain with the 4 possible passenger locations and destinations.

Such information is not readily available for all state transitions in the taxi domain.
Because of the barriers, the shortest way, for example, is neither necessarily the best
one nor possible at all. To reach the overall goal, the agent has to take actions that seem
to be adverse at first. This would especially be a problem if the grid had an even more
complex, maze-like structure. In these cases, the reinforcement learner also has to rely
on backing up Q-values from the goal alone because intermediary rewards cannot be
defined reasonably. The agent needs to reach the goal first andreceive a reward to start
exploring the state space selectively. Because we cannot clearly identify subgoals in
the sense of PGS, we have to slightly bend their definition here. We specify a single
subgoal that records a plan as long as actions move the agent upwards the Q-value
gradient:

1. Subgoal: Maximize Q-value.
Clue: An action is moving the predator towards this subgoal if the Q-value of
the new state is greater or equal than that of the previous one.

This means basically that the agent extracts trajectories from the Q-table. It also
entails that plans do not have any meaningful subgoal anymore, which waives the
advantage of easier knowledge inspection by experts. The definition of the subgoal-
clue tuple makes use of the fact that transitioning to a statewith a higher Q-value
conforms to transitioning to a state from which on larger rewards are expected. In this
scenario, this means getting closer to the goal. This subgoal-clue definition simply
constrains the general assumption that only actions leading to states with higher Q-
values than thefirst action are appended even further. Effectively, it forces plans to
walk along a Q-value gradient, which, however, does not needto be the optimal one.
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This definition renders the process in these experiments even more similar to learning
plans in CLARION, which we discussed in Section 2.2.

Apart from not being able to provide immediate feedback to actions, the problem is
simple compared to the pursuit domain. The environment is static. The taxi agent is
the only active entity and the outcomes of its actions are deterministic. With 5 possible
passenger locations including the passenger being on board, 4 possible destinations
and 5×5= 25 possible taxi positions, the state space consists of only5×4×25= 500
states. Because of that, neither the reinforcement learnernor PGS have to apply a
state abstraction to cope with this task. PGS is configured as defined in Section 3.4.
The reinforcement learner is provided by standard Q-learning with a table-based Q-
function.8 Its learning parameters are again:ε = 0.1,α = 0.05,γ = 0.9. If the agent
reaches the goal, it gets a reward of 1.0. If it performs an unsuccessful pickup or
unload, it receives a reward of−0.5. In all other cases, the reward is−0.05. This
follows the reward scheme of Andre and Russell (2002).

5.4.1 Experiments

Because of the absence of uncertainty, we hypothesize that plan reuse should be large.
The same should apply to the length of plans. An action sequence that was successful
once, is very likely to be successful again. If it is not the optimal path, then eventually
a competing action or plan will gain advantage over the plan because of the exploration
of PGS described in Section 3.4. Because of that, the asymptotic performance with
regard to the number of steps should be the same for a FALCON-only and a PGS

configuration. It should also let plan reuse and length grow continuously because
smaller plans should be substituted by longer ones frequently. However, since no
state abstraction is employed, PGS will not contribute to the agent’s exploration such
that we do not expect any speedup during learning time.

To test these hypotheses, we deploy the following agent configurations:

CNTL-0 A plain Q-learner setup as described above.

CNTL-1 A setup with the Q-learner and PGS with both applying a fully informed
state description.

The results are depicted in Figure 5.13. Indeed, plan reuse grows continuously
to around 90% and average plan length to around 8 steps. Thereis no significant
difference observable for the average number of steps needed to solve the problem.

8The original implementation is by Stephan Mehlhase and was restructured and adapted for this work.
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Figure 5.13: The performance ofCNTL-0 andCNTL-1 in the taxi domain. Values are
averaged over the most recent 100 trials.
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Figure 5.14: The number of plans recorded in a specific time interval and reused in
another specific time interval forCNTL-1.

However, the average number of decisions can in the long run be reduced from around
15 per trial to around 4 by deploying PGS. In general, plan reuse is much more
effective than in the pursuit domain, which is a result of theabsence of uncertainty
and the largely reduced size of the state space. This argument is also supported by
the observation that the general life time of plans increases with time (see Figure
5.14). This indicates that plans in a way converge to a competitive behavior, which
we were not able to achieve in the pursuit domain. Of course, these results are to be
expected. However, they confirm that the model is indeed working and is reusing plans
correctly. In addition, the initial discussion on the definition of subgoals demonstrates
the restrictions of PGS on a practical example.

5.5 Summary

The experiments show that the benefit of temporal abstraction by plans mainly de-
pends on the predictability of the environment and the quality of the state abstraction
applied. The former is backed by common sense and previous studies. The latter sup-
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ports the need for combining temporal abstraction and stateabstraction. We expand
on this discussion during the conclusion in the next chapter.



6 Conclusions and future work

In this thesis, we brought together a number of concepts: We discussed temporal
abstraction in reinforcement learning and in hybrid agent architectures. We also
discussed the integration of prior knowledge in reinforcement learning. Based on this
discussion, we presented a hybrid agent architecture, PGS, which extracts temporal
knowledge in the form of plans for later reuse from a reinforcement learner. The
PGS architecture was reviewed carefully and its peculiaritieswere identified. This led
to a number of improvements to be proposed. In particular, wesought to increase
both plan reuse as well as the length of extracted plans without implying a major
loss in performance. In a second step, we evaluated empirically the impact of plans
as temporal abstractions and as prior knowledge on the performance of PGS agents.
In particular, we posed a number of research questions. We will revisit them in the
next section and summarize the answers that arose during thecourse of this thesis.
Thereafter, we will touch upon opportunities for future work in Section 6.2.

6.1 Research questions revisited

In the following, we will review the research questions posed in Section 1.2 by sum-
marizing the results of this thesis, both theoretical as well as empirical ones.

Under what conditions can PGS successfully acquire effective plans?

There are a number of assumptions built into PGS, some of which are rather strong
and are not commonly made in related work such as option discovery in reinforce-
ment learning. In particular, PGS implicitly categorizes actions with regard to their
contribution to certain subgoals. This implies that the usefulness of actions has to be
decidable immediately. In fact, this is a requirement of supervised learning that is
explicitly not made in reinforcement learning, which is thereby rendered particularly
suitable for the application in situated agents. In domainswhere the usefulness of
actions is not directly obvious, this assumption renders PGSunfeasible. In such a case,
we would only be able to deploy PGS by using a particular subgoal that is not readily

76
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interpretable by humans. However, this workaround also prevents the extraction of
meaningful plans, which is actually a particular benefit of PGS.

Moreover, the original model needed to be able to predict theoutcome of actions
to decide about their contribution to subgoals. We managed to waive this assumption
by reorganizing the original execution cycle. Anyway, learned plans were generally
applied in experiments without a performance loss comparedto a plain reinforcement
learner. Only in the case of a totally randomly behaving environment, the reuse of
plans naturally became a general disadvantage.

How can the reuse of plans, and in particular longer plans, befacilitated?

We were able to increase plan reuse by applying different state abstraction strategies,
which allowed plans to be reused in situations beyond their original preconditions.
Generally, plan reuse in experiments was significantly greater than in previous work
without a trade-off in performance. Likewise, the average length of reused plans was
increased significantly by improving the plan recording mechanism. In particular, the
utility information for states of the reinforcement learner was exploited to provide a
more informed utility definition for plans. However, plans were only reused a few
times before they were dropped from the plan library again. We reason that our state
abstractions were not entirely appropriate and led to plansbeing reused in unsuitable
situations too soon. Indeed, with a more carefully designedstate abstraction, plans
started to have a longer life time. This is in line with the general assumption that
plans or action sequences are naturally more sensitive to their place of application
than single actions. Plan reuse and plan length increased with the predictability of the
environment, becoming quite impressive for the totally predictable case. This showed
that the model indeed works as intended.

What is the impact of using plans on the overall performance?

Generally, the reuse of plans yielded a performance improvement as long as there
were temporal patterns in the behavior of the environment and as long as a state
abstraction was applied. Larger improvements were noted when the environment
was more predictable and a more advanced state abstraction was used. In general,
the largest improvement was observed during the exploration phase. This follows
from our argument that plans comprise more information thansingle actions and are
thus a more powerful tool for exploration in unknown parts ofthe state space. This
observation underlines the need to intertwine temporal andstate abstraction. However,



Conclusions and future work 78

the reinforcement learner does not benefit from the general performance improvement
at all. In fact, knowledge was not transferred from the top-level module to the bottom-
level, even though the reinforcement learner is learning during plan execution. We
reason that such effects previously observed in the optionsframework do not occur
in PGS because of two restrictions: The reinforcement learner does not apply value
updates over plans and the knowledge representation at the top-level is too powerful
to be mapped by the bottom-level. In addition to performanceimprovements, the
number of decisions to be taken decreased significantly, of course depending on the
level of plan reuse. This allows resource-bounded agents inparticular to spend time
and resources on other processes than reasoning.

How can prior knowledge be incorporated into PGS?

We have investigated two possibilities for integrating prior knowledge into PGS in
this thesis: guiding the plan selection process and primingthe plan library with prior
plans as partial solutions to the problem. The former was already implicitly exploited
during the use of state abstraction. The latter allows for the injection of temporal
prior knowledge, which can be defined on a higher level than primitive actions. This
makes it generally more suitable as a language for specifying prior knowledge. We
showed that prior knowledge plans can be defined under the very same interface as
ordinary PGS plans such that they can be seamlessly integrated into the system. The
experiments show that such knowledge – even if it is very basic – can substantially
increase performance during the learning phase of the agent. However, as soon as
the reinforcement learner has reached a better policy, the advantage turns into a dis-
advantage. This encourages the development of “mechanisms” for unlearning prior
knowledge, which PGS exhibits but which were not explicitly exploited in the course
of this work.

6.2 Future work

In the following, we will outline a few possible themes for the extension of PGS.
PGScould be re-engineered to become a fully compliant option discovery algorithm.

This would generally require only two steps, namely integrating extracted plans back
into the reinforcement learner as options and rendering thereinforcement learner
capable of learning over these options. A suitable learningalgorithm was discussed
in Section 2.1.3. Such work would shed light on the question of whether plans, as
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generated by PGS, are suitable options at all. It is interesting because thisapproach
for option discovery would follow a completely different idea than previous work.
The latter typically identifies a possible subgoal first and then learns a policy for
reaching it.

We have touched upon strategies for state abstraction in Chapter 5. However, there
is surely space for improvement. Applying more powerful state abstraction techniques
could lead to a more effective plan reuse. In a second step, entire sets of similar
plans could be analyzed in order to find a common representative and a combined
precondition. This idea could be taken further by generating a representative that
consists of more powerful instructions such as loops or conditions, which would allow
a more informed mapping of its parents’ policies. These representatives could be
manipulated or evolved further, for example involving genetic programming methods.

Furthermore, PGS could be deployed to more sophisticated environments, in which
more actions are available and particular actions need to becarried out in sequence
in order to have any meaning to the domain. Likewise, the assumption of determin-
istic action outcomes could be waived to study the impact of another component of
uncertainty.
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