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Abstract

The complexity of reinforcement learning problems growganentially with the
size of the state space, which renders realistic casesvaid®land underlines the
need for guidance. This thesis studies a hybrid agent aathite, in which the top-
level module reuses temporal knowledge in the form of plaas it extracts from a
concurrently executing low-level reinforcement learnene first contribution of this
work are significant improvements of the original model amglementation of the
agent architecture, resulting in a more effective knowgedgtraction and reuse. The
second contribution is an extensive exploration of the gyneffects that take place
between both layers of the architecture. It is shown thatcthbination of state
abstraction and the reuse of plans as temporal abstradiotead to a significantly
shorter learning time of a reinforcement learning agentkewise, the number of
decisions to be made by the agent is reduced because a pldafisite commitment
to a course of actions that does not require intermediargoreag. In addition, we
demonstrate that the architecture enables the integrafiptans as prior knowledge
through a clear and convenient interface. Thus, partialamioximate solutions to
the problem can be easily specified to significantly decrkssaing time even further.
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1 Introduction

Recent advances in information technology are impres$iehicles are able to cover
long distances without the intervention of any driver. Hoappliances adapt to the
habits of their residents, and computer programs defeasopiand masters. These
applications have in common that the problems they tacldehayhly complex such
that reasonable solutions cannot be defined by deterngimstiructions. For instance,
developers might have limited information about the dyreoif potential application
areas or about the influence of other active entities. ldsteach applications are
capable of acting autonomously to a certain degree. Thag,dle able to adapt to
their environment without relying on exhaustive probleregfications.

Constructing systems that exhibit some kind of adaptiveandnomous behavior
is a research goal ddrtificial intelligence (Russell and Norvig, 2003). The main
notion in this area is that of amgent According to Wooldridge and Jennings (1995),
this term denotes any software program that follows its ow@rests autonomously by
acting on its environment, reacting to external percegtiand interacting with other
agents. Such an agent is callsitbatedbecause it directly affects its environment
and is affected by this likewise. Russell and Norvig (200@)sider an agent to act
rationally or intelligently if it behaves in such a way to niraize a given performance
measure given its currently available knowledge. This de&jfim obviously makes
sense for the development of agents that strive to attails gaaticularly provided by
their human masters. Whether this can cover the notion efligence in its entirety,
however, is not clear. Other researchers might only deemtsige be intelligent if
they exhibit more human-like attributes such as emotionacting irrationally once
in a while (Wooldridge and Jennings, 1995).

The concrete development of a software agent is based orcéicpgent architec-
ture, which in turn emerged from a formal agent theokgent theoriesllow us to
specify the properties of agents and to reason about theirétations. They arise
not only from research in artificial intelligence but alsorfr work in psychology,
philosophy and cognitive science. Typically, agent treerstrive to identify charac-
teristics of human behavior and to map them onto a set oflglgesispable concepts.
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A particular agent architecturgrovides a methodology for building agents that are
compatible with the underlying agent theory (Wooldridge dannings, 1995).

Agent architectures generally fall into three categorsliberative, reactive, and
hybrid architectures (Wooldridge and Jennings, 199Bliberative architectures
rely on the assumption that the problems in question can k#elad as symbolic
systems and that logical reasoning on these gives risedtigeint behavior or prob-
lem solving (Newell and Simon, 1976). A major product of tlyenbolic artificial
intelligence community are algorithms for automated piagn Planning is the
process of finding a path of actions to apply in a certain 8dnan order to reach
a situation in which a certain desirable condition holdsR®s was one of the early
planning systems, which is well known and had a significargaiot on subsequent
systems (Fikes and Nilsson, 1971). However, it has beergnened that symbolic
reasoning is problematic in time-critical applicationsagents whose computational
resources are restricted, so caltedource-boundedgents (Chapman, 1987; Brooks,
1986; Bratman et al., 1988). Planning is basically a seardihé space of options
available to the agent and the states the environment can &k complexity thus
grows exponentially with the size of both of these sets. Afram that, it is still not
clear how to represent the real world in a symbolic form difety (Wooldridge and
Jennings, 1995).

This has led to researchers arguing for so catéattive architectureswhich re-
frain from relying on any complex symbolic reasoning. RodBeooks has been a
foremost supporter of this idea. Hssibsumption architecturenvhich solely relies
on a simple hierarchical behavior control, has been depleyecessfully in various
robots (Brooks, 1986). The major advantages of this appraae its simplicity and
thus effectiveness. It is questionable, though, whethisrkimd of architecture can
host any higher-level intelligence, which, for examplegaleasons about the agent’s
long-term goals.

Hybrid architectureshave been proposed by researchers who seek to combine the
advantages of both worlds. They usually apply a mixture fiédint knowledge rep-
resentations and reasoning techniques. A family of suchtagehitectures, including
for example Rs (Georgeff and Lansky, 1987) anamA (Pollack, 1992), are based
on theBelief-Desire-Intentior{BD1) theory of agency, which was initially defined by
Bratman et al. (1988). In this framework, reasoning is gogdrby the beliefs an agent
has about its environment, its goals or desires and thetiatenit has itself currently
committed to. Plans for achieving certain intentions arecadculated on demand at

1For a detailed discussion of planning techniques refer tall@ih et al. (2004).
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runtime but are rather specified at development time as &jppate recipes. Featuring
these high-level concepts, reasoning allows for more cexnghécision-making and is
not only restricted to primitive actions. Because sucheystrefrain from classical
planning and because reasoning is constrained to behavrigratible with the agent’s
current intentions, they are able to sustain a certain lefvadactivity. This has made
them popular agent architecturerR $for example, was successfully deployed in the
failure-handling module of the NsA space-shuttle (Ingrand et al., 1992).

As claimed previously, it is rarely possible to specify thehavior of an agent
completely in terms of a program because of the complexityaisks might exhibit.
So far, however, we have only identified planning as a meanadents to behave
autonomously to a certain degree. The second major teahiigequipping agents
with autonomy ismachine learning An agent or a computer program can be said to
learn if its performance with regard to a certain perforneanmeasure improves with
its experience (Mitchell, 1997). Reinforcement learniag been the primary method
for designing situated, learning agents (Sutton and B4868). Major motivations
for this are that it does not require any prior knowledge ablmeienvironment and that
itis inherently aronline learningtechnique. The latter allows the agent to augment its
knowledge after its deployment. An agent employing reicéonent learning simply
learns by receiving feedback for the actions it takes inntsrenment.

1.1 Motivation

There has been an impressive amount of research in sugpplénning with machine
learning techniques, with a major focus on speedup of ptansystems (Zimmerman
and Kambhampati, 2003). However, limited research hasiigeted the possibilities
for integrating the B1 theory of agency with machine learning techniques, despite
its popularity as an agent theory and its focus on reasorbogteplans (e.g. Guerra-
Hernandez et al. (2004) and Olivia et al. (1999)). Convexid®p! architectures still
require plans to be specified by developers.

Recently, Karim et al. (2006a) introduced tfRkan-Generation-Subsyste{RGs) as
a possibility for developing learning® agents. Bsis the top-level of a hybrid agent
architecture, which records courses of actions perfornyea liiottom-level reinforce-
ment learner. These are stored as reusable plans. It is &ne dearning approach
and hence suited for situated agents. Allowing plans to lpgised during runtime
releases developers from having to define suitable plangd. pFurthermore, the
agent’s plan base adapts to changes in its environment.t Apar obtaining knowl-
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edge automatically within the @ framework, there are other obvious advantages
of extracting plans from low-level behavior. Shifting knledge from a fine-grained
description to a temporally more abstract level yields ap@ssion of knowledge on
the one hand and makes it more accessible for inspectionrhgsion the other hand.
It is also reasonable to expect a performance improvemeahwhkecuting recorded
plans. In fact, the knowledge about when to apply a certaam glomprises more
information than the knowledge when to apply a single action

Previous experiments showed useful plans being acquiradr{Ket al., 2006a,b,
2008). Yet, there was a substantial bias towards reusirgjesstep plans, which
obviously hardly yields any improvement over employing temforcement learner
alone. Apart from that, results were not entirely as exmkdteaddition, general plan
reuse was low because plans were only reused in the veryiaitiheir recording had
originally started. A state abstraction was not applieds $hggests the possibility for
further analysis of previous results and improving bothrttoelel and implementation.
It is also worthwhile to study ®sas a possibility for improving the performance of the
underlying reinforcement learner. It has long been nottbedl deploying a reinforce-
ment learner can be problematic in complex domains withelatgte spaces, which
require the agent to perform excessive, initial exploraid/hitehead, 1991). Thus,
speeding up the initial learning phase is a major task foearh in reinforcement
learning.

1.2 Problem statement and research questions

The first part of this work is to identify shortcomings of therent Rss architecture
and to relativize previous studies. This naturally leadsvesting effort in improving
the model and its implementation. In that, this work partlyan extension of what
has been done previously. The architecture is simply ceadeas a mechanism for
extracting knowledge from a low-level learning module ahdtimg it to a higher
level.

Having improved the plan acquisition process, it is thersoaable to ask how the
plan execution process can contribute to the overall pmdiace of the underlying
learning module. This turns the original view upside dowlanB are no longer only
an abstraction from low-level knowledge but they also piteva guidance for the low-
level module. They naturally comprise more informationntlte primitive actions
and, in that, their careful reuse can be expected to haveitivpasfluence on the
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overall performance. Studying these effects can leveragaunderstanding of the
influence of temporal abstraction in learning and plannmiielligent agents.
This raises a number of questions to be studied in this thesis

Under what conditions can Rss successfully acquire effective plans?A major is-
sue is to clearly identify the requirements of deployingskRand to assess them
against the background of current research.

How can the reuse of plans, and in particular longer plans, béacilitated? Both
general plan reuse as well as the average length of reused wiere low in
previous experiments (Karim, 2009). To justify any diséois@bout Rss at all,
both have to become significantly large enough.

What is the impact of using plans on the overall performance?As mentioned pre-
viously, plans do represent more information than prireitietions. It might be
valuable to exploit this property by a sensible plan reuswder to improve the
overall performance of the agent.

How can prior knowledge be incorporated into RGs? Integrating prior knowledge
about the problem or environment can substantially impttyectime that an
agent’s learning module requires to converge to a decerdavimhpolicy. A
plan represents the knowledge about a probably succegsfelt of primitive
actions. It is worthwhile to study the possibility of integjng such knowledge
into an agent.

We discuss the first question by reviewing ®in the context of related research.
The second question is addressed by improvements of thel miodi€s implementa-
tion. The remaining questions are discussed against tHgtmmd of experimental
evaluation. The second and the fourth question requireemehtation work to be
done, which partly is a change to the original model. Evatgean agent architecture
in a single domain only does not have any value. Researchg@sthis case need to
be validated in different domains to allow any conclusiombé drawn. Experiments
are conducted within thpursuitand thetaxi domains, which are both grid worlds. In
the former, four predators seek to catch a prey by surrognitliin the latter, a taxi
agent is supposed to pickup a passenger at a particulargpoaitd to bring him or
her to a particular destination.
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1.3 Thesis outline

The thesis follows two main themes: temporal abstractioth @iior knowledge in
learning agents. We first discuss both topics in the contesdinforcement learning
and hybrid agent architectures, which had a major impachemévelopment of ®s
(Chapter 2). In Chapter 3, we bring together these two cdecspen introducing
the Rss agent architecture. In particular, we discuss the relakignbetween 8s
and other approaches for exploiting temporal abstractimhmior knowledge in re-
inforcement learning. Based on that, we identify shortecwsiof the original Bs
model and develop a number of modifications. These extemsiom then touched
upon during the description of the system architecture iapfdr 4. However, the
concrete implementation is not a major part of this work asddescription hence
kept rather brief. In chapter 5, we report results of extengimpirical analysis of
the extended ®s model. This does not only clarify the restrictions af $but also
supports the general discussion about temporal abstneaitio prior knowledge. We
conclude the thesis with a summary of the work conducted amobudook on future
work in Chapter 6.



2 Literature survey

PGs as it is adopted in this thesis is mainly driven or inspiredilg concepts: re-
inforcement learning and hybrid agent architectures. Megadl architecture derives
from other hybrid architectures that extract abstract Kedge from an underlying
low-level learning module. The low-level module irGRis a reinforcement learner,
which basically learns which action to carry out in a spedaftaation. As this also
holds for some related agent architectures, reinforceeanthing is introduced first
in Section 2.1 before hybrid agent architectures are déstli; Section 2.2. This way,
we will identify where Rss originally comes from as well as how it relates to other
techniques for improving reinforcement learners.

2.1 Reinforcement learning

In supervised learningknowledge is compressed or obtained by identifying paster
in labeled input data. Each example consists of a featurtovend an associated
output value or class that the example belongs to. The ladtex to be provided by an
expert. A learning algorithm is supposed to produce geizedkules from this data
which predict the output value or class of new examples barddeir features. The
model is builtoffline, meaning that the learning algorithm requires a sufficjelatige
example set before it can generate a reasonably accuratd (Mitthell, 1997).
Situated agents as they are of interest in this work, on téraxy, need to adapt
to their environment from the very first moment of their lifgcte in order to avoid
harmful mistakes. They surely cannot wait for enough datagoacquired to learn a
reasonable behavior. Agents might act for a long time in diquéar part of their
environment before moving on to another one. In that casegreerglly optimal
behavior can hardly be obtained in the first place. Likewike,utility of an action
might not become obvious immediately. It might turn outddkat a particular action
moved the agent onto a path that becomes useful in the longltus, however, a
general requirement for standard supervised learningitligts that each example

13
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Figure 2.1: The cycle of sensing the environment, acting r@ceiving a reward in
reinforcement learning agents. The agent receives situgtand reward
r; at timet and answers with actios, which leads to a new situaticg, ;
and reward 1.

can be evaluated instantly. Hence, they are not partigukuitable for behavior
learning in situated agents.

Reinforcement learningin contrast, is an online learning approach. It provides
a definition for certain types of problems and a general fraonk for various algo-
rithms. The agent is assumed to exist within its environmiatjuently sensing its
surroundings and taking actions to proceed towards itssgdahch action changes
the stateof the agent’s environment and results in the agent reqgameward, repre-
senting the utility of this state transition. The continsawycle of sensing, acting
and receiving a reward is illustrated in Figure 2.1. Whilkirig an action is the
responsibility of the agent, the information obtained freensing and the reward
received are determined by the environment. Even thoughgbat might have some
information about how the reward is produced, it cannot dtte reward’s definition.
Reinforcement learning algorithms utilize the agent’samhhistory to estimate the
utility of each state, which, in turn, might very well depenrdthe utility of states that
can be reached from the state in question. The ultimate gaalah an agent is to
maximize its cumulative long term reward. Therefore, amadesigner can bias the
agent towards a particular, goal-directed behavior onlgscifying rewards, states
and actions appropriately. In particular, the correcitytdpf actions does not need to
be specified explicitly, which is an inherent advantage sugervised learning in the
case of situated agents (Sutton and Barto, 1998).
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2.1.1 The reinforcement learning problem

Much work in reinforcement learning is based on the asswnpihat the agent’s
environment has thilarkov property This means that the change of the environment
and the reward for taking a particular action only depencdherattion and the environ-
ment state in which it was performed. In particular, the emvinent’s response does
not depend on the history of states, actions and rewardse fdomally, the following

is assumed to hold for all state transitions and histories:

Pr{sii=sr1=r|s,a}=Pr{st1=sSnhi1=r|s.a&,Mn,S-1.& 1,...,M1,% a0},

with § denoting the state at tinte a the action taken at timeandr; 1 the reward
received as a response to this action. An important obsenva that in such an
environment all future states and expected rewards can dmicped based on the
current state alone. Hence, making a decision in order tarmze the sum of future
rewards can be substantially facilitated. It requires, éxmv, that the state description
provides a suitable summary of all the relevant informafrom the history (Sutton
and Barto, 1998).

A reinforcement learning problem that fulfills the Markowperty can be modeled
as aMarkov Decision Proces@VIDP), which is a tupleM = (SA,T,y,R) (definition
based on Ng et al. (1999))S denotes the set of possible environment states and
A the set of actions available to the ageft.= {Psa(-)|s € Sa € A} is the set of
probabilities Ps4(S') for transitioning to state’ when executing actiom in states.

y € (0,1] specifies a discount factor, whose function will become obwilater. R
describes the reward distribution, which is usually asslitoebe deterministic. In
that case, the reward function is definedRassx A — IR. If the agent executes action
ain states, the environment yields the rewaR{s,a). In this work, we will make the
simplifying assumption that the set of stais finite, which leads to &nite Markov
Decision Procesgespectively.

A policy t: S— A for a given MDP denotes that actiamis taken in states
with probability Ti(s,a). A reinforcement learning agent seeks to learn a policy that
maximizes its future cumulative reward when following tpislicy. The expected
cumulative future reward oexpected return Efor taking actiona in states and
following policy mtthereafter is described in terms of thetion-value function

Q'(s,a) = Err{ % Yrikls =sa = a} : (2.1)

k=0
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The discount factoy determines the influence that later expected rewards hatleeon
overall expected return. Thaptimal policy whose expected return is larger or equal
to that of any other policy for all states, is denotedislt can be directly obtained
from the optimal action-valuefunction Q*, which is defined as (Sutton and Barto,
1998):

Qf(s,a) = m]?xQ”(s, a) Vse SacA.

By reformulation of Equation (2.1), it can be shown that tbgam-value function
exhibits the following recursive relationship known as Badlman equatior(Sutton
etal., 1999):

Q"(s,a) =R(s,a) +ysz Psa(s) Z n(s,a)Q"(s,d).
€S aeA

The optimal action-value function becomes under the saamsformations (Sutton
etal., 1999):
Q*(s,a) =R(sa) +ysz Psa(S) maxQ*(s,d).
S aecA

Applied to every combination of states and actions, thesateans yield another set
of equations. They could possibly be solved analyticallfirid Q*(s,a) and thereby
" if a model of the environment was readily available. Thisisoh, though, requires
a huge computational effort and is therefore not feasiblgeimeral. It is also a strong
assumption that a model is available from the first. Moreisgadlly, the model is
learned by the algorithm and action selection provided Bpming techniques such as
Dynamic ProgrammingSutton and Barto, 1998). However, in this work, only model-
free problems and algorithms are of interest. Such reiefoent learning algorithms
approximate the optimal action-value function iteratjvbl updating the value of a
state and an action based on the reward received and theofahe successor state.
Among the most well-known techniques are arguably Watk@rkearning (Watkins,
1989) and Sutton’s temporal-difference Wp@lgorithm, which have been applied in
a number of real-world problems (Mahadevan and Kaelbli®96). We will focus
on the former in the following. Other prominent examples @diseussed thoroughly
by Sutton and Barto (1998).

After taking an actiorg in stateg, receiving reward;. 1 and transitioning to state
S.+1, Q-learning applies the following simple update rule tohkie-function:

Qs &) «— Qs &) +a[rt+1+vrgg\XQ<st+1.a) —Q(s &), (2.2)
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wherea is the learning rate ang the discount factor as described previously. Q-
learning has been proved to converge to the optimal actduevfunction under the
condition that states and actions are visited infinitelgnd that some other minor
restrictions are obeyed (Tsitsiklis, 1994; Jaakkola etl&i94).

2.1.2 Exploration and exploitation

An optimal policy for the action-value function would be tovays choose the action
a in states which maximizesQ(s,a). In that case, however, the agent would never
explore its options and very likely only exploit a behavibat is not globally optimal.
A more subtle and common exploration strategy iscttgeeedy policy. With probabil-
ity €, the agent takes a random action and only otherwise chdosestion currently
assumed to be optimal. Generally, trading exploration fptatation effectively is a
challenge for reinforcement learning agents. On the ond,lthe agent has to exploit
its current knowledge in order to achieve high rewards. @ndtimer hand, it might
discover better behavior that pays off in the long run ifigdralternative strategies.

The amount of exploration required for attaining an optipealicy and hence the
complexity of reinforcement learning grows exponentiallith the size of the state
space and the number of actions available to the agent. hiéredf these is large
and a reward is not granted until reaching a goal statealratiploration effectively
becomes a random walk in the state space. Not until thengtn& atarts to propagate
Q-values from the goal state on to previous states. Eveititnaal speedup techniques
such as experience replay (Lin, 1992) or eligibility tra¢gstton and Barto, 1998), in
which the propagation of Q-values is accelerated, do ngptinghat case. Under these
conditions, a reinforcement learning problem simply beesintractable (Whitehead,
1991). The possibility to learn only from rarely provideaveeds and the resignation
from rating the utility of every action explicitly then baoes a weakness. Hence,
exploring the environment blindly or randomly as with thgreedy policy is not
necessarily a clever approach. The agent could better nsakeafypreviously obtained
knowledge or knowledge about the problem that is specified yaman domain
expert in order to guide its exploration.

This observation basically leads to three major posg#slitor improving the learn-
ing or exploration phase of a reinforcement learning ag@miginally, the values of
the Q-function Q-value$ are stored in a table that is indexed by states and actions. |
a realistic problem setting, this is not feasible becausestate space might simply be
too large. In that case, decision-making should take plaemiabstracted state space
that is created by dropping irrelevant features from thginal one or by substituting
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the Q-value table with a function approximatioBtate abstractioror generalization
is often provided by neural networks. This way, the compjerf the problem can
be decreased substantially. Since, an experience madeeistate of the original
state space will have an affect on the knowledge learnedtaiibather states that
exhibit some similarity to this one with regard to the abdied state space. However,
Sutton and Barto (1998) warn against using neural netwargaiiticular because they
require non-trivial expertise for their configuration. Apfiom that, employing state
abstraction can entail losing the possibility to convergéhe optimal policy. Li et al.
(2006) expand on the question of trading off informatiorslaad state space reduction
by giving a more formal analysis of state abstraction.

Complementary to state abstractiontésnporal abstraction Enabling decision-
making at various levels of temporal abstraction has loremnlzekey research topic in
artificial intelligence (Sutton, 1995; Sutton et al., 199f)an agent is able to solve
a problem at one level of detail after the other, it can camstits options to those
relevant at the current level of reasoning. Explorationobees faster because the
agent can effectively take larger steps within the stateesp@/e will study temporal
abstraction in detail during the next subsection.

Another opportunity to speed up learning arises from theidipdhat not even
humans tackle a problem without having gmyor knowledgeabout how to solve
it. We either obtained this knowledge from our own expergenc from advice by
teachers. Biasing a reinforcement learner with prior kealge has thus been iden-
tified as an important research topic and has been studieelynwiiflahadevan and
Kaelbling, 1996). We will discuss this topic in Section 2.1.

2.1.3 Temporal abstraction in reinforcement learning

Temporal abstraction in reinforcement learning mainly hasseeds in two ideas:
macro-actions or temporally-extended actions on the ond,rend hierarchical rein-
forcement learning on the othévlacro-actionsare closed-loop policies that compete
for execution with primitive actions in every state. If a maaction is chosen for
execution, the agent follows its policy until its termirmaticondition is met. The Q-
value of the state in which a macro-actiomn, was started is updated based on the
rewardsr; received during it® steps and the Q-value of the termination stt@:

Q(s,m) — Q(s,m) +afy’ rg&XQ(&m,a) —Q(s,m)
Frpa+ W2+ Y ). (2.3)



Literature survey 19

The Q-values of states visited in between are updated dogotd Equation 2.2.
McGovern et al. (1997) define macro-actions as fixed poljoies to their application.

They observe that depending on their definition and the tadkaad, the impact
on performance can either be significantly positive or riegatOn the one hand,
exploration can be accelerated because the agent can tgke &eps in the state
space and reach remote states earlier. On the other han@-ta&ie propagation
traverses the state space faster. The latter, however,|sarba achieved by Lin's
(1992) experience replay or eligibility traces, which haveimilar effect. These
techniques do not have any influence on exploration behatviough. In a similar

way, model-based reinforcement learning algorithms haenkaugmented to allow
planning with temporally-extended actions (Sutton, 19%%&cup et al., 1997, 1998).

Similar to hierarchical task network (HTN) planners (Sdogr 1975), hierarchical
reinforcement learning systems allow a problem to be brakem into a hierarchy of
subtasks. Thereby, they make use of prior knowledge abdehpal decompositions
of the problem in order to compress the possibly large stsiees The agent’s execu-
tion follows the hierarchy, while its decisions at every ickegooint are constrained by
the guidance of the hierarchy. Then, optimal decisions ahgto be learned for the
choice points. Such hierarchical problem specificatiomsdascribed, for example,
by finite state machines (Parr and Russell, 1998), partiadl;deterministic programs
(Andre and Russell, 2002; Shapiro, 2001) or unordered (iietterich, 1998). These
approaches generally drop optimality in favor of a signifiba decreased learning
time. The difference to macro-actions is that developetiipate the applicable
situations for a certain subtask. Macro-actions, in cattiaan be applied freely in any
state. They are considered an augmentation of the learmaidgm, while a strictly
hierarchical decomposition rather provides an abstnadijorestraining reasoning to
parts of the state space at each hierarchy level (Jong €048). It is not clear
how such a hierarchical decomposition can adapt to dynamit® environment, for
example if the task changes intrinsically.

Sutton et al. (1999) generalize those two streams inptiensframework. Each op-
tion consists of a set of states- Scalledinitiation setin which it is applicable, a pol-
icy 1: Sx A [0,1] € R, and a stochastiermination conditior : S* — [0,1] € R.
The execution process is the same as for macro-actions hatslight difference that
the applicability of an option can be restricted to a subs$etilcstates. The authors
propose an extension which allows policy and terminatiamd@gon to depend on all
states taken previously during the execution of the optiBach options are called
semi-Markowecause their decision-making does not only depend on thentstate.
Respectively, the learning algorithm as defined in 2.3 ifedaSMDP Q-learning
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The policy of an option can decide to execute another paliays giving rise to hi-
erarchically decomposed behavior. The authors also denata$iow options can be
interrupted during their execution in favor of better ait#ive behavior. The definition
of options obviously subsumes the specification of mactmag and hierarchical
reinforcement learning tasks.

Automatic option discovery

It still remains an open question how options come to lifgpdesally the hierarchies in
hierarchical reinforcement learning algorithms need taecified explicitly. Sutton
et al. (1999) propose learning the policies of options timessaay policies are learned
by standard reinforcement learning algorithms. They defr@etermination states
of an option as a subgoal and associate a reward value with. tidnen, standard
reinforcement learning algorithms can be applied to leapolaty for reaching the
subgoal states from given initiation states. However| iiitiation conditions and
subgoals need to be provided explicitly.

Stolle and Precup (2002) propose an algorithm that dissafese subgoal states
automatically. They randomly generate problems in a gritbivproblem in order
to obtain visitation counts for states. The highest coumtticate possible subgoals.
States that are found on trajectories passing by a certhigosili often enough are
considered to be part of the particular option’s initiatgat. For each pair of initiation
set and subgoal, a policy is learned using Q-learning. Oft&r aptions have been
learned, SMDP Q-learning is applied to learn a policy ovesé&options and primitive
actions. Hence, the agent is required to obey a two-stagegspwhich we notice as
unsuitable for situated agents.

McGovern and Barto (2001) propose a similar approach, wieigins subgoals on-
line, though. Subgoals are identified by applying data ngingchniques to previously
experienced trajectories and visitation counts, whichoatg based on the first visit
of a state in each trajectory. Only states that lie on subdessajectories and not
on any unsuccessful one are considered for counting. Itsisnasd that a domain-
dependent success condition for trajectories is readaylase. The authors observe
that subgoals are more clearly identified using these céstns. The initiation set of
an option is created by collecting all states that have bésted prior to reaching
the associated subgoal state on any of the relevant tregsteithin a certain time
frame. The policy for an option is then learned using exmegereplay with these
trajectories.
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The general problem with all these approaches is that aptawa not available
until the goal has been reached for the first time. Hencepogtcannot be of help
during the most critical period of learning, in which the ages basically conducting
a random walk. More recent approaches analyze the struafitine agent’s transition
graph, either globally (Menache et al., 2002) or locally ¢z Simsek and Barto,
2004; Ozgiir Simsek et al., 2005). Subgoals are assumed tmtilenecks in the
graph, which can be passed by the agent to enter other strooghected regions
that possibly have not been visited yet. Analyzing the dldfzesition graph has the
drawback of requiring a copy of the agent’s entire transitisstory. Only addressing
a recent part of this history, on the contrary, requirestaathl parameters to specify
the number of transitions to account for. Both these allgordt rely on experience
replay to learn options for discovered subgoals.

The impact of temporal abstraction

Jong et al. (2008) conduct a more detailed investigationhenbienefits of using
options. They conclude that the positive effect of expexereplay, which is usually
employed to obtain the options’ policies, conceals the nedfect of introducing
temporal abstraction. To isolate both benefits, they p@usalternative definition
of options as subtasks, which explicitly does not includephblicy but rather defines
an option as a subproblem specification. A policy is not ledrad hoc directly after
the subgoal has been discovered, but rather concurrenttytiaé overall policy. The
agent basically learns an overall policy and a policy folhesubgoal at the same time.
The authors note that automatically discovered optiondieawily distract exploration
similarly to fixed macro-actions. Options are generallyestdd equally to primitive
actions, such that exploration is implicitly biased towsathdeir subgoals. If the goal
can only be reached with a number of primitive actions froichsaisubgoal, it is less
likely to be attained by a random walk than without utiliziogtions. Jong et al. also
note that in order to make full use of temporal abstractionagent should be able
to generalize from the application contexts of temporakyended actions. This is
the main goal of approaches that learn subgoals and usefpotal abstractions by
examining policies obtained in related tasks (Thrun andsactz, 1995; Pickett and
Barto, 2002). They seek to discover subpolicies that canamsfierred to future tasks.
Jong et al. do not consider the benefit that options cong&ituthe understandabil-
ity of learned knowledge. If a problem is broken down intotssks, it can be more
easily understood by humans. In addition, they do not adcfmurthe opportunity
to simplify decision-making. Because options are defineer @vpart of the state
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space only, they could actually constrain reasoning to ¢levant states and actions.
Moreover, the number of complex decisions necessary atigfelével policy can
be reduced because control is shared with the options’ meag@rocesses. This is
especially interesting when sensing the environment absesjuent decision-making
are costly.

2.1.4 Prior knowledge in reinforcement learning

As mentioned above, a reinforcement learner is likely to epdexploring its en-
vironment randomly until it receives a reward for the firshei (Whitehead, 1991).
This surely does not work for large state spaces as foundairarerld applications.
Incorporating prior knowledge about the task in order torease this learning time
has hence been recognized as a major requirement for feasibforcement learning
systems (Mahadevan and Kaelbling, 1996). We already haye gessibilities for
guiding a reinforcement learner by exploiting temporalwieazige about the task in
the previous subsection. We will expand upon further pdgss in the following.

Integrating prior knowledge into reinforcement learninfdws two primary goals:
Either guiding exploration towards promising actions defasting parts of the state
space; or reducing complexity by constraining the agefiisaes. Prior knowledge
is specified about the agent’s environment, the problenf @s¢he goal states (Hailu
and Sommer, 1999). It can be obtained from a related tasky &oother agent or
a domain expert. It can be rather intrusive by directly malaifing the knowledge
base of an agent or it can give hints to the agent, which ites fo pickup or not.
However, coping with inaccurate domain theories remairsklpm. Unfeasible prior
knowledge can definitely harm an agent’s performance (HaithSommer, 1999).

Hailu and Sommer (1999) discuss options and effects of teftgprior knowledge
in the initialization of Q-values when a table-based Q-fiorcis employed. Koenig
et al. (1996) show that in order to reduce complexity of afoggement learning
problem, such a Q-value initialization can be based on ktesithat are consistent or
admissible for A-search. However, this work is restricted to the theoretic promerti
of reinforcement learning as only a table-based Q-fundsassumed. The methods
proposed are not feasible for large state spaces, for whigteffort of initializing
Q-values would be tremendous. Results cannot be direethgferred to systems that
deploy function approximation for state abstraction.

1For an explanation of*-search refer to Russell and Norvig (2003).



Literature survey 23

Artificial neural networks are a common choice for functiggpeximation in re-
inforcement learning. Influential techniques for primirdwes$e are the ENN and
KBANN algorithms (Mitchell and Thrun, 1993; Shavlik and Towel§8D). Both
incorporate domain theory in their processes of learningtavark. Prior knowl-
edge is either represented by a set of previously trainedahaetworks or a set of
propositional horn clauses, respectively. Still, domaiwowledge has to be encoded
on a fairly fine-grained level. In fact, even configuring adtion approximator or
identifying a suitable state abstraction often requirsslitprior knowledge about the
specific structure of the learning task.

Instead of directly modifying the agent’s underlying knedde base, Dixon et al.
(2000) guide the exploration of a reinforcement learningtamler by a number of
multiplexed static controllers. The system is able to decidien a particular static
controller does not give beneficial advice anymore, for glarbecause the environ-
ment has changed inherently or the learning controller lchgeeed a better policy.
The authors observe a substantial decrease in learning tiRteee and Boutilier
(1999) decouple the source of prior knowledge even more fitmmlearning agent.
They propose an algorithm that a reinforcement learningitaggn apply to learn by
observing a teaching agent. However, the agent is assunkedwoits reward model.

Lin (1992) train an agent with one or more possible solutiortse problem. These
experience traces or sequences of actions are presentée tearning algorithm
repeatedly to increase the impact on the policy being lekrAesubstantial speedup of
learning is noticed. Maclin and Shavlik (1996) introduce/stem that takes advice in
a simple programming language, which supports highei-mstructs such as loops
or decisions. Advice is integrated into the agent's knogtetase by an extended
KBANN method and can be injected at any time during the agent'syite. Having
a more powerful language to specify prior knowledge all®gahe work of domain
experts and facilitates their acceptance of the systematticplar, we will refer to
prior knowledge that comprises temporal knowledge aboask astemporal prior
knowledge

Indirect guidance of a reinforcement learner can also beiged by shaping—
extending the received reinforcements by a domain-deperidection and thus mo-
tivating the agent to visit particular states or to take ipatar actions (Ng et al.,
1999; Wiewiora et al., 2003). The invariance of the optityadif policies under this
transformation has been proved by Ng et al. (1999) for gextanditions. Already
simple reward transformations can yield a strong speedugweMer, they might be
difficult to identify.
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2.2 Hybrid agent architectures

As outlined in the introduction, hybrid agent architectueze characterized by their
intention to bring together reactive and deliberative gectures. Agents that apply
one of the former are mainly defined by their ability to reaaxternal events instantly.
The latter specify agents that carefully reason about #miironment first in order
to obtain an anticipatory course of actions for reachingrtlemg-term goals. We
argued that both have their shortcomings, which are, fomgke, addressed by B
architectures. Even thouglsBis intended to be embedded into theiBramework,
we will take a more general view here, accounting for its bdjig to serve as an
agent architecture in its own right. We note thagghas a strong relationship with
horizontally layered architectures, in which each layelejpendently suggests a be-
havior based on current sensory input (Weiss, 1999). Taowatne scope of this
discussion down further, we focus here on architectureshichwhigher-level layers
or modules obtain temporally abstracted knowledge by etitra from lower-level
modules. In that, this is closely related to the previousidision on option discovery
in reinforcement learning. A more encompassing discussfarchitectures related
to PGscan be found in Karim (2009).

CLARION or “Connectionist Learning with Adaptive Rule Induction @i¢” is a
hybrid agent architecture that stems from work in cognipggchology and was de-
veloped by Sun (1997). It is based on the assumption that hwagnition processes
generally work at two knowledge levels, one of whiclmmplicit and the otheexplicit
The former is assumed to be executable but distributed aawtéssible for manipu-
lation. It is implemented by a neural network, whose knogkdhherently meets
the requirement of being distributed over a number of neurdixplicit knowledge,
in contrast, can be more readily interpreted and is acdesBb modification. In
CLARION, explicit knowledge is implemented by symbolic, propasil state-action
rules. At each decision point, both levels provide a weidlmeeEommendation for the
next action. The system chooses one of these probabiligtica

Because of the different knowledge representationsUunRTON, both levels need
to apply different learning strategies. The implicit bottéevel module employs Q-
learning to adapt its neural network. Obviously, it can ngplieitly manipulate
its knowledge. The top-level module learns by extractinmisglic rules from the
bottom-level during execution. These rules are later oriaheed or generalized
based on the outcome of subsequent executions. Sun et @h)(20te that explicit
learning dominates in simple tasks with a small input dineeraity. Otherwise, im-
plicit learning is more feasible because its generalizadicapproximation capabilities
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handle complexity more effectively. This observation iported by the criticism
towards symbolic reasoning as discussed previously. Hervthe power of symbolic
manipulations such as planning or hypothesis testing ale available to the top-
level. Having different knowledge representations be malaied concurrently leads
to positive synergy effects. Learning does not only workdootup but indirectly also
top-down because explicit knowledge guides the agent tisveglevant features or
information. Both learning speed as well as asymptoticquarance are assumed to
benefit from this interrelation (Sun et al., 2005). Sun an@rh(2004) note the
possibility to encode prior knowledge as rules in the toglle The bottom-level
would initially rely on the guidance of the top-level and dwally gain more responsi-
bility while it is augmenting its knowledge. However, sggtig more complex prior
knowledge in the form of state-action rules only is cumbernso

CLARION does not integrate the possibility for explicit planningeevhough Sun
et al. (2001) found that human subjects were subconsci@pglying planning tech-
niques in specific tasks. BecauseARION is outperformed by humans in these tasks,
Sun et al. assume the lack of planning to be one of the inhelisativantages of
CLARION. Sun and Sessions (1998) and Sun (1999) propose an algohidextracts
plans from learned Q-values. They use beam search to fincithehat is most likely
to reach the goal based on the assumption that a Q-valuatadithe probability of
reaching the goal from that state. A variant of the algoriiracts conditional plans,
taking into account a certain number of alternative statelsaations in each step. The
process is run offline after Q-learning has been applied. é¥ew Sun and Sessions
note that plan extraction already yields reasonable esuth Q-values not having
converged yet.

The explicit-implicit distinction is also peculiar to thecA-R cognitive architecture
(Anderson, 1990). On the explicit level, it hosts declamatnd procedural or asso-
ciative knowledge in the form of production rules. The inaftlievel is comprised
of statistical information related to the frequency in whigpecific explicit knowl-
edge is accessed. Essentially, this affects the likelinbad certain knowledge is
retrieved or certain productions are reused. Hence, thisffisrent to knowledge
separation in CARION, where information was simply kept redundantly on both
levels. Knowledge in AT-R is arranged within problem spaces, thus effectively
reducing the amount of data to consider in a particular s@nalLearning either seeks
to assess the utility of declarative knowledge or to idgntiéw knowledge instances
or productions (Lebiere et al., 1998). Lebiere and Walla2®0() describe how
temporal knowledge can be encoded on the implicit level Isp@ating consecutive
productions. However, it is only an indirect descriptiontefporal knowledge and



Literature survey 26

not a direct one. AT-R has been frequently used in cognitive modeling (Bryson,
2000).

Garland and Alterman (2001) propose a technique that alémests to learn coor-
dinated procedures. Successful execution traces of cwdedl activities are analyzed,
summarized and stored in a case-base. These cases maitéyncexpectations
about communication partners and coordination points dkasgesuitable applica-
tion contexts. These procedures can be recalled, for exxampien an associated
communication request is received and a longer interadgti@xpected. Olivia et al.
(1999) also employ case-based reasohingorder to reuse previously applied plans
in BDI agents. In a planning situation, previous cases are sehfaise possibly
a suitable one retrieved and eventually adapted to the rdusituation. Similarly,
concrete planning sequences in the agent architectaresRare transformed to ab-
stract cases (Bergmann and Wilke, 1996). The translatiooegs is guided by user-
defined rules. On demand, an abstract case can be transéatledoba concrete plan
instance. Those abstract operators in the abstract cade thé planner to find a
concrete implementation for that plan. In general, theggagches rely heavily on
classical planning tools and languages.

Common to the architectures presented above is the orgiamnizaf knowledge
on two distinct levels, both of which apply different repeatations and possibly
reasoning techniques. For case-based reasoning appsop#uisdeads to a reduction
in planning time because of the reuse of previous reasomigglts. In the case of
CLARION and ACT-R, the interactions between implicit and explicit knowdedead
to positive synergy effects, which have a favorable impactearning performance.
However, case-based reasoning requires classical ptateghniques, plan extraction
for CLARION is rather an offline learning approach, and AR sequence learning
does not yield an explicit plan representation. These ohtiens motivate the devel-
opment of a hybrid architecture that extracts explicit plfnom implicit knowledge
in an online manner and reuses them competitively with igglicit knowledge. In
order to facilitate plan reuse, acquired plans should b#radisd in a way such that
they become applicable in a broader context as done in thebzsed reasoning
approaches.

2For an overview of case-based reasoning and case-baseihglaefer to Mitchell (1997) and Ghallab
et al. (2004), respectively.



3 The Plan-Generation-Subystem

In the previous chapter, we have discussed the benefits gioteabstraction and
the advantages of hybrid agent architectures. We haveifidéensituated, resource-
bounded agents as the main interest of this work. In thistelhawe will introduce
PGsas a hybrid agent architecture that extracts temporallyatied knowledge from
implicit knowledge using an online learning approach. Wk fivst describe plans in
more detail because they provide the representation ofdexhgnowledge in Bs
(Section 3.1). Then we will present and review the originasodel in Section 3.2.
We will introduce various extensions to the model in Sedi8r8 and 3.4. Finally, we
will discuss the integration of prior knowledge to the moeSection 3.5.

3.1 Plans

In classical planning agents, a plan is the product of dedibee reasoning and de-
scribes a recipe for reaching a certain goal (Ghallab et28D4). Particularly in
STRIPSlike planning, a plan essentially consists of the follogventities (Fikes and
Nilsson, 1971):

Precondition The precondition determines the situations in which the daappli-
cable.

Goal The goal specifies the conditions that this plan is suppasedttieve.

Body The body defines which actions to execute in sequence fromrédeondition
in order to achieve the goal.

Plans might generally follow more complex control flows, ugh, for example
including conditions, loops and hierarchical decomposgi (Ghallab et al., 2004).
Likewise, goals might be more descriptive, allowing, foaeple, to have the execu-
tion of entire action sequences as an objective (van Rigknstal., 2008). However,
the concrete execution of a plan will generally turn out taalggain action sequence.
This is the case we are interested in here. We note that ptasgezified above are

27
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subsumed by the options framework, which was introduceccti@ 2.1.3. A plan’s

precondition can be described by an option’s initiation #et goal by the states in
which the option’s termination condition holds, and thenfddody by a deterministic
policy.

The task of plans in the context oftB agents is slightly different, which mainly
stems from the fact that they are typically not obtained lasoming at runtime. In-
stead, a plan is defined by developers and brought to exacotice the agent has
committed to the intention of performing this plan in orderachieve its associated
goal. Further reasoning is restricted to options that angpadible with current inten-
tions, thus effectively focusing and accelerating deaisitaking (Pollack, 1992; Rao,
1997). This might lead to suboptimal behavior but genersdlyes the agent time and
resources. BI plans are usually only partial, meaning that they are nopssgd to
attain a final goal. Instead, they only seek to achieve subgpassibly involving the
spontaneous execution of other plans (Bratman et al., 1988)

A plan constitutes explicit information about the sequadityi of actions. Hence,
the knowledge about when to apply a plan contains more irdtiam than the knowl-
edge about the applicability of each of these actions alblmvever, it requires less
information to be stored because only the plan’s applicationtext or precondition
needs to be kept. Therefore, a plan is basically a compressiower-level knowl-
edge, which also makes it particularly suitable for comroation to other agents
(Sun and Sessions, 1998). Moreover, having temporal krigelabout the intentions
of other agents allows more informed reasoning about thedawation of behavior
(Pollack, 1992). Having a clear goal and comprising temigarawledge, plans can
also be more readily understood by humans. They have thinéalye over simple
state-action rules, from which temporal knowledge is diffito obtain (Karim, 2009).

3.2 The original model

PGsserves as the top-level module of a hybrid agent archite¢tuextract knowledge

from a low-level learner (Karim et al., 2006a). It monitong execution of the bottom-
level and records sequences of actions as reusable plaed asilomain-dependent
heuristics. The bottom-level module can be any system tlogtgses atomic actions
for execution. It is usually a rule-based system with a lewel knowledge represen-
tation. Here, the bottom-level is implemented by a reirdonent learning system that
learns state-action rules. Plans are not only recordedlsotraused when they are
expected to be successful.
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Plan extraction in Bs relies on the problem being broken down into a set of
subgoalsby a domain-expert, which do not have to relate to each otheygh.
Each subgoal is assigned a triggering condition catlee that determines whether
an action would move the agent towards this very subgoal.ioAstare generally
appended to a currently recorded plan as long as they matleétsondition hold and
thus move the agent towards its associated subgoalpigwenditionof a plan is the
situation in which its first action was recorded. To make plaomparable, each one
of them is assigned agxpected utilitywhich is generally based on the reinforcement
learning rewards received during its recording and the denfie that the agent has
in this plan. The confidence rises or falls with the plan adghg its original reward
again on subsequent executions or not. The expected usliyso supposed to be
compared with the expected rewards of actions proposedeblgdtiom-level learner
in order to decide which one of them to execute. Hence, a pldss has a similar
definition as a classical plan as described in the previccttose It consists of:

e A precondition, in which it started to be recorded and in Whids assumed to
be applicable again.

e A goal or subgoal, describing the intention this plan is sigsg to fulfill.
e A plan body, consisting of a simple action sequence.

e An expected utility, making plans comparable with each o#ra with single
actions.

In every step, the system makes a decision on whether itrpesfthe action pro-
posed by the bottom-level module or a plan from its plan ipraless it is currently
executing a plan anyway. This decision is based on a numlfactofrs, some of which
include the availability of any plan for the current sitwatiand the difference of its
expected utility and the expected reward of the single bot®vel action. Hence, ®s
only requires the current situation, the action proposedhbybottom-level module
and its expected reward to be provided for its decision-n@kiThis tuple defines
the interface betweend? and the bottom-level module. The system architecture is
illustrated in Figure 3.1.

Because the details ofd have already been described thoroughly by Karim (2009),
we will refrain from repeating this information here andtewd focus on the issues
important for this work. The execution cycle ofGRB is depicted in Algorithm 1.

If the agent is currently executing a plan, the next actioseguence is chosen to
be performed (line 3). Otherwise, the bottom-level modsleasked to sense the
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Figure 3.1: The abstractd® architecture and execution cycle. The agent receives
situations and rewardr; at timet. The reinforcement learner passes
the state information and a proposed actphogether with the expected
reward Er(a)} for that action to the 8s module. This decides on
either performing a plan or the bottom-level action and aswio the
environment with actiomy. This leads to a new situatis, ; and reward
rer1. The reinforcement learner is omitted in this process waifgan is
executed.

environment and make a proposal for an action (line 6). Thas tries to match
the current state with the precondition of any of its plarisanly of the found plans’
expected utility exceeds the expected reward of the botéwed-action, that one with
the highest expected utility becomes a candidate for exet(ine 7).

The expected utilityof a plan is defined by the factor of the reward that the first
action in the sequence received when it was recorded andotifelence the agent
has in the plan’s success. The confidence is initialized witl on the plan’s con-
struction. During subsequent reuses, it is reinforced malieed depending on its
success. Penalizing happens when a plan action turns oatriorbexecutable or the
final reward cannot meet the plan’s reward. Otherwise, tidid®nce is reinforced.
The default behavior is that penalizing decrements the dendie value by one if it
was two or larger before. The current confidence value isdaiifvit is smaller than
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Algorithm 1 The Rssexecution cycle

Require: Ci = (s,a,E{r(a)}) is the state-action-reward tuple at execution st&p
whichs is the stateg; the action and K& (&) } its expected reward; is the set of
subgoal-clue tuplesyesis a threshold number of execution steps, such that plan
recording is activated after thgesth step. Initialize plan library, set selected
plan ps = null.

1. for each execution stepdo
if ISEXECUTINGPLAN() then
EXECUTEPLAN ()
continue

end if

s,a,E{r(a)} < BOTTOMLEVEL()

ps < SELECTPLAN (s, &,E{r(&)},G,?)

if ps#~ null then

: EXECUTEPLAN ()

10: continue

11:  endif

12:  if i > iresthen

13: ASSOCIATETOPLAN (s, &, E{r(a)},?)

2
3
4
5:
6:
7
8
9

14:  endif
15:  EXECUTEACTION(&)
16: end for

two. Reinforcing increments the confidence value by onegaddent of its current
value. A plan is removed from the library if its expecteditytidrops below a certain
threshold. In that, a plan can be assigned a spditdiime, namely the time between
its recording and its removal from the library. The confidenpdate policy described
above was retained from previous work, for which it was erogily obtained (Karim,

2009).

If a plan was selected, its first step is executed (line 9). olfsaitable plan was
found, the bottom-level action is considered a possibla pletion. If it contributes
to the subgoal of any currently recorded plan, it is appended plan is not being
recorded and the bottom-level action contributes to ondn@fsubgoals, it becomes
the first step of a new plan associated to this subgoal witlcdineent situation as its
precondition (line 13). If the plan reaches a certain mimmlength, it is activated
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and thus becomes available for selection later. If no pléinmcan be performed, the
bottom-level one is carried out (line 15).

3.3 Discussion

The architecture of s is largely inspired by CARION, which was introduced in
Section 2.2. Like CARION, PGs hosts two different knowledge representations and
reasoning techniques on two different layers. Similahg main knowledge transfer
works bottom-up. However, the top-level oEBhosts plans, which are more abstract
than propositional rules. The external plan extractionabdjy of CLARION only
works offliné* whereas Bsis an online learning approach, which might foster plan
extraction in situated agents.GB does not apply any top-down learning such that
bidirectional synergetic effects as inL&RION cannot be observed. The general
approaches of execution monitoring for plan extraction stading plans in a case-
base are also found in architectures that apply case-bassdring as discussed in
Section 2.2.

As shown already by Karim et al. (2006a,b, 2008%sHs indeed able to extract
reasonable and also relatively long plans from the bottewatireinforcement learner.
By extracting plans from low-level rules,d3 obtains temporal and hence more ab-
stract knowledge. The control policy described by the lewel learner is compressed
and becomes more accessible for inspection and suitableofomunication. By
committing to a course of actions once, the agent can omieguart of the otherwise
necessary decision-making. This is especially favordlderising the environment or
reasoning is expensive or only rarely possible.

Plans can be integrated seamlessly to the plan library obadgent as outlined
in Section 3.1. Likewise, plans ind® can be described by the options framework,
which was introduced in Section 2.1.3. One of their mainrig&ins regarding
these formalisms, however, is their lack of hierarchicalaeposition. This follows
naturally from the procedure of plan extraction used @sPAnother main difference
is their notion of goals, which does not consider a goal as afsgarticular states to
reach but rather as a classification of each action. It iscngtassumption that this
knowledge is readily available to the agent designer. Ity fhone is able to classify
every action as either helpful or not, the motivation for émgimg a reinforcement

1Taking into account that according to Sun and Sessions [18188s can be extracted before the Q-
learning algorithm has converged, one might imagine amimts& of @ ARION that, in fact, extracts
and uses preliminary plans before convergence.
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learner as the bottom-level module seems questionableingiakto account that
immediate knowledge about the usefulness of every actiandsable, a supervised
learning system might be more suitable as reasoned in 8etlo Actually, Rss as
described in the previous section even goes a step furtherder to decide whether a
proposed action is supportive of any subgoal, its outconsedibe predicted because
its actual execution only happens after it is consideredetagpended to a plan.

PGs has the capability of discovering options from a reinforeanlearner. This
process has an advantage over other option discovery thlgsribecause it proceeds
inherently online and does not bias exploration towardsiquaar states. It rather
biases exploration towards particular action sequendeisfvpreviously have already
been found to be useful. This advantage also stems from théhat plans are not
potentially used in every possible state but only in thokenedd by the plan selection
process. This renders their influence on exploration lelsstantial and more focused.
As opposed to options, plans are not fully integrated to #maesdecision-making
process as primitive actions, which are essentially thempmetitors. Plans rather
override low-level behavior as done in Brooks’s subsunmpéichitecture. That makes
balancing plan execution and primitive action executiomerfficult.

In fact, comparing the expected utility of a plan and an acigmot straightforward.
According to the description in Section 3.2, the expectddyubf a plan is essentially
determined by the reward that its first action received. Thiss not take into consider-
ation that later steps might have much lower or higher regvartie comparison with
primitive actions also does not account for the rewardsiplys®ceived after deciding
to take the primitive action. A reward is basically not aable long-term indicator
for the value of a state or an action and hence rather nobdeiigs an indicator for the
value of a plan. Furthermore, assuming that the reward otaoracan be predicted
is also a strong assumption, which is generally not maderifareement learning. In
the options framework, in contrast, the value of an optiateiermined by its Q-value,
which does only depend on the agent’s experience and nos@hirknowledge.

Likewise, the agent designer is assumed to have knowledny #ie convergence
time of the underlying reinforcement learner. She has te kaowledge aboutyres—
the state-action-reward tuple from which o #is allowed to record plans. This
knowledge is not necessarily easy to obtain nor might it laglavie at all.

There is space for improvement regarding the recording afigl So far, plan
recording is interrupted if another plan is selected forcexen. This will often lead
to shorter plans being acquired than would actually be ptessi



The Plan-Generation-Subystem 34

Algorithm 2 The extended ®s execution cycle

Require: C; = (s,&,q;) is the state-action-reward tuple at execution stépwhich
5 is the stateg the action andy the Q-value of that action g is the set of

subgoal-clue tuplesyressts-athresheldrumberetexecutionstepssuchthatplan
recordingis-activatedaftertheyresth-step. Initialize plan libraryp, set selected

plan ps = null.
1. for each execution stepdo

2§ < BOTTOMLEVEL()

3:  if ISEXECUTINGPLAN() then

4: &,0; < EXECUTEPLAN (5)

5: ASSOCIATETOPLAN (s, &;,q;,?)
6: continue

7. endif

8  &,0 < BOTTOMLEVEL()

9. ps<— SELECTPLAN (S,&,Gi,G,?)
10: if ps# null then

11: a;,0j < EXECUTEPLAN ()

12: ASSOCIATETOPLAN (s, &;,q;, ?)
13: continue

14:  endif

15: @ < EXECUTEACTION(g)

16:  if i=>tmresthen

17: ASSOCIATETOPLAN (s, &;,q;,?)
18:  endif

19: end for

3.4 The extended model

Having identified the shortcomings of the originat #model in the previous sec-
tion, we will now describe the major changes we introducdtk &xtended algorithm
is illustrated in Algorithm 2. Obvious changes to the oraione are underlined or
crossed out.

The first modification stems from the general observatioh rihaards are not the
optimal indication for the value of an action if the bottoewl module is provided by
a reinforcement learner. As described previously, Q-vaprevide more information
because they suggest the rewards that are likely to be egbeiien taking a particular
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action and following the optimal policy from there on. Thidended information is
not contained in reward values. Hence, we generally use thal@@ of an action as
its “expected reward” in the sense o068 We will from hereon denote the reward
received by the environment as thmmediate reward Thereby, predicting the im-
mediate reward of an action based on insight knowledge abeuteward function
becomes unnecessary because the Q-value, in contrasidily r@vailable. This also
means that the reward of a plan is determined by a Q-value atticplar, a plan’s
reward is obtained from the maximum Q-value of the statehe@dy the last step
during recording. In that, a comparison between the value sihgle action (its Q-
value) and a plan’s reward is more reasonable. The planartelay being derived
from a Q-value denotes the actual cumulative reward exgectde received after
executing the plan and following the optimal policy theteaf The Q-value of an
action has the same meaning.

However, this still does not rule out the case in which a plaghtnhave a higher
reward than an action but the action would lead to higher r@svaeceived later.
Nevertheless, it reduces this risk, especially when aitiango the (only) goal yields
the highest possible immediate reward. Then, higher Qegalndicate states closer
to the goal, which means that eventually the inferior siragtdon will get a higher
Q-value if it really brought the agent closer to the goal tki@aplan. We generally
allow actions to be appended to a plan if their Q-values agldrithan the Q-value of
the first action of that plan. The approach of exploiting Qtea for plan extraction
is related to plan learning in .G RION as proposed by Sun and Sessions (1998) and
Sun (1999).

To allow PGs to converge to the optimal policy at all, we modified theL&CT-
PLAN method to include some random exploration. Even if a plan &ddrger
expected utility than the action proposed by the bottonellewith probability €2,
which is a parameter to the model, it executes the singleractbonetheless. If any
plans are found suitable for execution, one of them is choaadomly. The plan
with the highest expected utility has afitimes higher chance to be selected than the
second one. That one, in turn, hasratimes higher chance than the third one and so
forth and so on. The first step of the selected plan is therugsdcline 11).

Another major modification addresses the general probleah dhcisions about
appending actions to plans were originally depending odiptiens of the actions’

2|n this work, € is generally set to 0.1, which is a frequently used value é@ethreedy reinforcement
learning exploration strategy.
3In this work, nis set to 4 because this was empirically found to be a goodsiiur
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outcome. To know which subgoal is supported by an actiomgutsome needs to be
considered. To overcome this issue, actions need to besdautit first before any
decision about their recording can be made. This is reflaotédgorithm 2 on lines
15 and 17, which are swapped as opposed to the original #dgoriAs mentioned
earlier, the recording of a plan is stopped once anotheriplaalected for execution.
It would be preferable, though, that recording continuethat case such that the old
plan becomes a suffix of the new one and a longer plan is oltaifikis change is
reflected on lines 4 and 5 as well as 11 and 12. ThedTEPLAN method returns
the action performed by the plan and the Q-value of the netg.sthis information
is fed into the ASSOCIATEPLAN method.

As previously discussed in Section 2.2, hybrid architexturan benefit from syn-
ergy effects between their layers. Originallyz®only conducts bottom-up learn-
ing — extracting plans from the bottom-level module — altijfioa possible top-down
learning approach is straightforward. The reinforcemeatrier is now enabled to
learn from the execution of plans, which thereby act ascstaintrollers. Transfer
of knowledge is simply achieved by updating Q-values dutiregexecution of plans.
This approach is similar to those of Maclin and Shavlik (1996n (1992); Dixon
et al. (2000) as depicted in Section 2.1.4. Making the kndgéetransfer bidirectional
is assumed to facilitate the performance of the overallesystThis assumption will
be subject to empirical investigations in Chapter 5. Onéetraff implicated by this
change needs to be mentioned upfront: Having the reinfaeogtearner learn during
the execution of plans requires additional sensing of thir@mment, which could
have been saved otherwise. This is reflected in lines 2 andhdrenthe bottom-level
is also required to sense the environment even if a plan isués@. However, no
decision-making is necessary during plan execution.

We assume the plan confidence update process to be effentnmte to foster
the use of effective plans over that of less effective ondt) effectiveness being
determined by the comparison of taking single actions amuguhe plan. Hence,
we consider the restriction to start using$only after a certain number of state-
action-reward tuples unnecessary. This way, another coemdhat required addi-
tional knowledge is rendered obsolete. This is in line witln &@nd Sessions (1998).
They observed that plan extraction inARION is useful even if Q-values have not
converged yet.
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3.5 Prior knowledge in PGs

In Section 2.1.4, we discussed the definition of prior knalgke in a higher-level
language, generally considering that prior knowledge weessary to render any
reasonably complex reinforcement learning task solvaiepropose here that plans
as in Rss can be deemed to be such a language. In faot, &ents are typically
defined by prior knowledge plans. Sun and Zhang (2004) obstdwy benefit of
defining prior knowledge at a higher level to feed it down towédr level knowledge
base. We argue that the plan execution processcsf gtovides a convenient hook
for injecting prior knowledge into an agent. We will brieflisduss these options here
and exploit them later on during the empirical evaluatiore Wl then also allude to
the risks of priming an agent with prior knowledge.

The outline of Algorithm 2 immediately suggests four poittitat can benefit from
prior knowledge:

Subgoal-clue tuplesThe more comprehensive the problem can be covered by dis-
tinct subgoals, the more plans can be recorded and the mcuease they are
going to be.

Plan library The plan library can be primed with plans that serve as pneéim,
partial solutions to the problem. Because the reinforcentearner is also
learning during the execution of a plan as described in tleeipus section,
it is likely to benefit from guidance by plans.

SELECT PLAN method Depending on the domain, it might be feasible to select plans
for reuse in states that are similar to their original pretttons. This is in
line with the argument of Jong et al. (2008) that temporatrab8on and state
abstraction should go hand in hand.

AssOCIATETOPLAN method Once the recording of a plan has been started, it is
necessary to decide how long subsequent actions are to lemdggh The
decision could rely on the development of subsequent resa@rdn knowledge
about the domain-specific semantics of actions and tharrglations.

All these points provide non-intrusive and intuitive wagsspecify prior knowl-
edge, meaning that the fine-grained knowledge base and esmanof the underlying
reinforcement learner do not have to be modified. They allomehcoding insight
knowledge either about the problem or the environment.irRierily defined plans
can be easily exploited to roughly guide the agent towardsjging states or actions.



The Plan-Generation-Subystem 38

The impact of varying subgoal-clue tuples has been studigtabim (2009). Here,
actions will be appended to plans according to the spedditat the previous section,
which is led by Q-values. We will study priming the plan libyand guiding the plan
selection process in detail during the evaluation of the ehodChapter 5.



4 Implementation

In the previous chapter, we have introduceslslRand proposed a number of changes
and extensions. In this chapter, we will adapt an engingepioint of view and
describe s on a more technical level. In particular, we will outline #@schitec-
ture and depict possible extension points. However, implgation details are not
of particular interest to this thesis because they do notribite to answering the
research questions. They are hence omitted. The followisgugsion will thus be
rather concise.

4.1 Architecture

The implementation is based on previous work by Karim et28l08) and is provided
in the AvA programming languade During the course of this thesis, the original
source code was extensively re-factored and correctecctizfély, a reimplementa-
tion of the system was conducted. The goal here was to iretbasinderstandability
and extensibility of the architecture in order to facidurther research. The archi-
tecture with its main components and their interrelationslepicted in Figure 4.1.
Most of these components correspond to entities introdwgddthe Rss algorithm

in Section 3.2. We will present them briefly in the following.

The St at eAct i on class and theSt at e and Act i on interfaces

The St at eAct i on class corresponds to the main interface betwega dhd the low-
level module — the state-action-reward tuple. It is a cowatafor concrete, domain-
specific instances of thet at e andAct i on interfaces. The former holds the current
state of the environment as it was sensed by the agent'sdegi-nodule. The latter
corresponds to the action that the low-level module prapdse execution. It also
contains its expected reward value.Stat eAct i on object is passed to tHeGS class

in every execution step unless a plan is executed.

Ihttp://java.sun.com

39



Implementation 40

PlanLibrary CommunicationModule
stores
sk
*
Plan Goal PGS
consists of
State L.* invokes
StateAction Low-Level Module
Action creates

Figure 4.1: The concrete architecture ag$with its main components.

The Pl anLi br ary, Pl an, and Goal interfaces

Plans are specified by concrete implementations ofPtlem interface. Each plan
is associated with a particular, domain-specific goal,eegnted by a concrete im-
plementation of thé&oal interface. In addition, a plan holds a list 8fat eAct i on
objects, which correspond to the plan’s action sequencé plahs of an agent are
hosted in &I anlLi brary instance, which basically acts as a container.

The PGS class

The PGS class is the central component of the system. It wires tegedh other
components including the low-level module. From that, deigees aSt at eActi on
instance in every execution step, which is then fed to thes Bxecution cycle as
described in Section 3.2.

The Communi cat i onModul e class

Karim (2009) elaborated on strategies for communicatirggbetween agents. The
Conmuni cat i onMbdul e class is responsible for deciding on whether to send a partic
ular plan to other agents or not and which received plansep kar further reuse.
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4.2 Extension points

From the architectural view described above, some possitiEnsion points follow
naturally. 1t should be noted that most of them were only ueoed by significant re-
factoring. We focus on those that are of general interestlerant to the evaluation
of PGs in the next chapter. In particular, we will omit those thatyovary with the
domain at hand and that have no general value, namelt titee, Act i on, andGoal
interfaces.

Plans and plan management

Plans are central tod%, so is their organization. Plans need to be created andedelet
if they turn out to be useless. They also need to be indexedfagiraccess. It is
essential that the system is able to determine plans theamokcable in a certain
situation quickly. The plan library also might treat planf$edently according to their
age, for example. These requirements depend on the spegggfication of the system
and are hence encapsulated in a separate module. Planeiesmight come in
different shapes. In particular, each plan determinestttiessin which it is applicable
itself. This allows for state abstractions be defined sprifi for each plan. Likewise,
plans are supposed to handle confidence updates autongmdimss gives rise to
various opportunities. For example, prior knowledge plaresdefined by the same
interface as ordinary plans, which allows their seamletggmation into the system.

Communication

PGsitself is a single agent architecture. However, @sRigent might possibly find

itself in a multi agent scenario. In that case, plans canesasva convenient way to
exchange behavior policies. We elaborated on that in Seétib. Because commu-
nication is generally an important part of agent systemsdpdgic is encapsulated in a
separate module. This module might, for example, use ahblg®n the confidence

values of plans to decide which ones to communicate. It calsloldecide on sending
plans in bulk to reduce time spent on establishing commtinitgonnections. How-
ever, this component is not only responsible for sendinglaut also for receiving

them. It could apply reasoning about which received plamsdorporate into the plan

library and which ones not.



5 Evaluation and discussion

In the previous chapters, we have introducesksRdiscussed implementation details,
described the plan acquisition process, and identifieddiions of the model. We
have also proposed extensions to the model, which we seekaloage empirically
in this chapter in order to support our claims. In general,pnavide a careful and
thorough hands-on analysis of the ®architecture to depict its very peculiarities. We
also expect new questions to arise that might encourageefuirivestigations. First,
we will briefly review the general hypotheses we seek to test.

Even though plan extraction observed in earlier work satisfie expectations, plan
reuse did not (Karim, 2009). No significant plan reuse wagoiesl and mostly plans
consisting of only one step were reused, which is basicaltiiing else than a single
action. We hypothesize that the extensions proposed inocBeg#4 and the general
re-engineering conducted lead to longer plans being reaiséd generally high use
of plans compared to single primitive actions.

Earlier, we argued for a plan as temporal knowledge commgyisiore information
than the sum of its actions. Therefore, we hypothesize ¢heing plans in situations
that are beyond their original preconditions has a largsitpe effect on performance
than reusing a single action. We presume that this effeeoéslpy holds for the time
of learning, when the low-level reinforcement learner stdplores the environment.
In this phase, it can particularly benefit from guidance.

In the same way, we expect temporal prior knowledge in the fof plans to facil-
itate the performance of such a system. We hypothesizerijeating plans as prior
knowledge can increase performance even further. We hesedyl demonstrated that
the integration of temporal prior knowledge ie®is straightforward, which we will
make use of here.

In the next section, we provide the rationale for the choictan® domains used for
the evaluation of the model. Subsequently, we will desdnlmetail the methodology
that guided the experiments (Section 5.2). We will presendt discuss results sepa-
rately for the chosen domains in Sections 5.3 and 5.4. Thiptehn is concluded with
a short summary (Section 5.5).

42
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5.1 Domain choice

Estimating the plan reuse and performance of agents rgliaglires that experiments
are repeatable in a controlled way. Valid conclusions cabealrawn from a single
observation alone. Moreover, testbeds need to be free@imttiinfluences in order to
facilitate the analysis. For these reasons, experimeatscaaducted usingpy domains
rather than real-world problems. This allows the explietting of test parameters
and the controlled measurement of the variables under addgmr, which simplifies
reasoning about results significantly.

The value of executing a plan as generated by Bepends on the uncertainty in
the domain, which is according to Decker (1995) comprisethefuncertainty about
changes in the environment itself, about other agentsastiand about the outcomes
of actions. The predictability of the results of a sequenfcactions decreases with
its length and the uncertainty of the domain. This is a serjpwblem for classical
planning. If a goal is supposed to be reached by a single fhlaplan has to account
for all possible uncertainties it could encounter durilsgeitecution. The extreme case
is a completely randomly behaving domain, in which the bedicy is necessarily
restricted to look ahead only a single step. In that casepaesh knowledge cannot
be of any value. We seek to study the feasibility adPin domains of varying
uncertainty and thus varying degrees of realism. This @sahlreasonably thorough
analysis of the architecture’s value. However, to rendan peuse useful at all, the
domains studied here exhibit certain temporal patterng;twdan indeed be covered
by temporal knowledge. This is supposed to shed more ligliheradvantages and
disadvantages of temporal abstraction in general.

The first test bed is thpursuit domainwhich was originally defined by M. Benda
and Dodhiawala (1986) and has since been studied in varmfggarations (Stone
and Veloso, 2000). In this domain, four predators seek td down a prey on a grid
without explicitly coordinating their actions. In order ¥an, the predators have to
surround the prey. In the original task, the prey was movarglomly. Here, we vary
its behavior from random to deterministic in order to study impact of determinism.
This domain hence covers two of the three factors of unceytalefined by Decker:
uncertainty about the environment and uncertainty abcgraagent’s actions. The
task is reasonably complex to be interesting because itesaine of the strong
assumptions made in classical planning that the world ig ohhnging due to the
agent’s own actions (Ghallab et al., 2004). It is generaihenable to the application
of PGs because subgoals in the definition of$can simply be specified for the
problem. Because the state space of this problem is large, abstraction needs to
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be applied, which renders plans reusable in different &tms. This allows us to
study the impact of plan reuse on the agent’s exploratioth plans being learned or
specified a priori.

In the second domain, thaxi domain an agent is supposed to pickup a passenger
at a certain position on a grid and deliver her to a particdé&stination. The problem
has been studied frequently in literature on temporal abtm because it exhibits
distinct states that can be identified as subgoals easjlyDéetterich, 1998; Parr and
Russell, 1998; Ozgiir Simsek et al., 2005). Howevers Bannot clearly be configured
for this domain as we will see later. This allows us to denmmatstthe inherent
restrictions of the approach. However, we will modify thesPmodel in order to
record and reuse action sequences at least. The problelmemeithibits uncertainty
about the environment nor about other agents. We alsomdfan adding uncertainty
about the agent’s own actions. Hence, the advantage of ptansition and execution
should become even more evident than in the pursuit domain.

5.2 Methodology

In both domains, agents have to reach a goal within a paatiaulmber of steps.
We seek to evaluate the impact of deployingg®n the reinforcement learner’s initial
exploration or learning phase. To assess performanceyntla@following dependent
variables are observed during the experiments and coesideithe discussion:

Steps The average number of steps that the agents need to reachdhkindicates
their performance, with better performing agents reqgiless steps. This is
a more informed indicator for performance than the ratiaiadg in which the
agents reached their goal successfully. As opposed to ssicate, it does not
depend on the maximum number of steps allowed per trial, whself is a
parameter to the system.

Decisions The average number of decisions indicates the computhtmsis ex-
pected to be spent on reasoning. In this work, we are priynariérested in
situated, resource-bounded agents. They need to restsity decision-making
in order to obey time-constraints. Minimizing decisionkimg is a goal of the
extensions to 8s introduced in this thesis. The number of decisions directly
depends on the following two variables because no deciaomto be made
while following a plan.
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Plan length The average length of executed plans indirectly indicdiesoenefit of
using Rss. If plans are rather short, the number of decisions can drel
reduced and ®s itself becomes obsolete. Therefore, this number is sowught t
be maximized here.

Plan use The ratio between actions entailed by the use of plans andes¥ actions
determines the amount of time in whicle® has the control over the agent.
Since more plan reuse generally implies less decisions todake, this variable
is also to be maximized.

Because there are strong relationships between theséleariave will seek to
discuss them concurrently during the experiment analySither experiments will
be conducted to support or explain these primary results.

Each experiment configuration is run for a certain numberialst with each trial
running until the agents reached their goal or the maximumbear of steps was
executed. A certain turn in the concatenation of trials ikedaa sequence, thus
uniquely identifying a certain time point within the entiegperiment. Considering
that a trial runs for at most 150 steps and a certain numbeiads b is performed for
every experiment, there are at most 50 sequences in an experiment.

Statistics are calculated after every 100 trials and vahwesaged over these 100
trials. This enables studying the trend of performance, liictv we are particularly
interested. Each experiment configuration is executedB8stiwith different, ran-
domly determined initial situations for every trial. Hovegyall configurations share
the same sequences of initial situations. This allows tona@sé confidence intervals
and enables statistically valid comparisons of configareti Significance tests are
conducted at a confidence level of 0.95 witkelch’s t-testwhich does not require that
the two samples to be compared exhibit equal variances. Sueresthat a sample size
of 30 is sufficient to expect a normal distribution for the gding distribution of the
mean (Cohen, 1995). Detailed statistical results will iporied during the discussion
for those results that are not obvious from the figures. Centfid intervals are drawn
on most of the line graphs. For some points they are too smbk tvisible, though.

The results presented in this chapter are not likely to hmié¥ery kind of domain.
They might vary quantitatively or even qualitatively. Wdhthius point out restrictions
and assumptions of the experiments conducted here thadsbewonsidered by the
reader. Additional domains were not examined because eftiomstraints.
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5.3 Pursuit domain

Thepursuitor predator-preydomain is one of the original testbeds ad & Parameters
and domain rules were mostly retained from previous workrifa2009). In the
pursuit domain, four predators seek to chase down a prey on-#onoidal grid (13«
13 tiles). Learning is only implemented for predators. Tineusation is time-discrete:
Each predator can chose to move up, down, left or right oneeydime step. The
prey, in contrast, only moves every second step. The predafia if they manage to
surround the prey on its north, east, south and west sideeataime time. The prey
wins if it reaches any of the boundaries or if the maximum nends steps (here 150)
is exceeded. The predators start at different random positon the board in each
trial.

The following three different types of prey are deployed:

Deterministic circle prey This prey starts at the upper right corner and runs anti-
clockwise along the largest square on the grid that doesowghtany of the
boundaries. Its path is depicted in Figure 5.1a. The prezée as long as any
predator is blocking its way. It is obvious that this prey mainwin by its own
effort because it never reaches a boundary.

Nondeterministic circle prey This prey follows the same rules as the deterministic
circle prey but randomly leaves its trajectory. The prey &a&0% chance in
each turn of moving off its track one step towards the gridister and following
the same movement pattern there. It has a 30% chance of mbauigto its
original path. The path of this prey is depicted in Figured5.1

Random prey This prey starts each trial randomly on one of the four tilesha
upper left corner of the grid’'s center and from there on oakes random steps.
It is the only prey of these three that has a chance of winningelaching a
boundary.

These prey types vary with regard to their predictabilityiata will allow us to
make statements about the value of plans given differeredsgf uncertainty in the
environment. If not mentioned differently, the determiicigircle prey is used for all
experiments. Considering that predators have to implicitordinate to surround the
prey simultaneously, this task is already reasonably cermpiowever, the problem is
simplified by an immediate reward being available for eveepsas we will see later.
In fact, this is a major simplification of the reinforcemeeaining task. Nevertheless,



Evaluation and discussion 47

' .
b 1 b
| T !
I B
|
!
1
!

!
T
!
1
|
!
|
|
1
!
J
|

!
T
|
I
! I
T
: 1 ;
YL = -d-d-1-L-F 5 I 14— 1o

(a) deterministic (b) nondeterministic

Figure 5.1: The unique path of the deterministic circle mayg a possible path of the
nondeterministic one.

this problem, which is sometimes calledmediate reward learninghas often been
studied in literature (Schuurmans and Greenwald, 1999¢tkfar reason for using the
pursuit domain as a testbed foGRis that subgoals can be defined quite clearly. In
that, the domain can serve as a first presentation of a pyogeployed s.

Next, we will describe the configuration of the predators bsaguently, we will
present and discuss the experiments. Those are dividethimfollowing parts:

e Control experiments with basic configurations, which explie inherent char-
acteristics of Bs (Section 5.3.2).

e Prior knowledge experiments, which investigate the impaattegrating prior
knowledge into the predators (Section 5.3.3).

e Further experiments, which complement and enrich the @&kgeriments (Sec-
tion 5.3.4).
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5.3.1 Predator configuration

The predator setup requires the bottom-level reinforcérsamner and the top-level
PGsmodule to be configured, both of which are described in thii@e

Configuration of the reinforcement learning modules

Each predator is driven by a reinforcement learning moduteiged by a system
called FALCON, “a Fusion Architecture for Learning, COgnition, and Natign”

(Tan, 2004). For this work, the exact definition okLlEON is not essential. It is
enough to note that it applies standard Q-learning with afitiadal scaling term
(1—Q(s,a)) in order to provide a smooth normalization of the Q-valuebtarrestrict

them to the interval0, 1] € R (Tan, 2007):

Q(s,a) — Q(s,a) +afri1 +vrg€gXQ(st+1.a) —Q(s,&)](1-Q(sa)).

The learning parameters are the same as in Tan (2004). TkarQg parameters,
however, are set as follows = 0.6,0 = 0.5,y = 0.01. € is decreased by 0.0006
after every trial. These parameters were taken from preweark and have proven
to perform well. The decrease efwas changed to 0.0004, though. We refrained
from further cumbersome search for optimal learning patarseapart from testing
some minor variations (see Figure 5.2). The configuratiatideed here turned out
to be the best one as for long term performance and perfoendumeng exploration
with regard to the average steps needed to catch the prey. iNshaw later that
our claims also hold for a configuration that does not redubst that relies on the
following fixed values frequently used in literature= 0.1,a = 0.05y = 0.9. This
latter configuration shows the best performance duringairéxploration (see Figure
5.2). However, it does not reach optimal performance inohng Irun because it does
not cease to take exploratory actions. In fact, howeves @& more realistic setting
because it does not rely on information being available attwitime needed for the
reinforcement learner to converge to an optimal policy.sKmiowledge would usually
not be available to an agent designer.

FaLcoN itself does not employ any function approximation for stalstraction.
However, the original state space is large. For a 13 tiles grid and 5 agents, there
are (13 x 13)° ~ 1.38x 10 possible states. It would take the predators a long time
to fill a table-based Q-function and converge to the optinddicp. To render the
problem solvable, the state information passed to everggboe is restricted to only
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Figure 5.2: Performance of different Q-learning parametgdtings for RLCON in
the pursuit domain. For the fixed exploration rate, pararsetge:

€ =0.1,0a = 0.05y = 0.9. For the decreasing exploration rate, initial

parameters aree = 0.6,a = 0.5,y = 0.01, withe decreasing after every
trial by the amount in brackets.
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two parameters. One is an indicator for trearingof the predator towards the prey. It
can take eight different values corresponding to the maintpof the compass. The
other one is thexposureof the prey, which determines how well the prey is covered by
the predators. It can take four values which gradually feekposure. Itis defined as
the number of sides (north, south, east, west) of the preyatieenot occupied by any
predator. Predators at intermediary directions such ab-weest count both for the
northern and western sides. If all predators, for exampée|arated on tiles directly
above the prey, the exposure is 3. If all tiles directly a€fddo the prey are occupied
by predators, the exposure is 0. This abstraction redueestdlte space t0:84 = 32
possible states.

Rewards are provided to a predator after every action aria {fee rangg0, 1] € R.
They depend on the change of distance and exposure betwesiiuhtion in which
the action was performed and the situation in which the aatsulted. Minimizing
the distance between each predator and the prey is obviausg§cessary condition
for catching the prey. It is, however, not a sufficient one.ofder to win a trial,
the predators also need to cover the prey such that it canoee mnymore. This
is reflected by the second factor in the reward stimulus — ti@nge of the prey’s
exposure. The reward for a certain predator at time steépgiven the distancels
between predator and prey and the exposyad time stepsis as follows:

1.0 ifthe prey is captured,
0.8 ifa<a_1AG <d_1,
r=<0.6 ifd<d_gq,

04 ifa<ea_,

0.0 otherwise.

Configuration of the PGs modules

The Rssmodule of the hybrid architecture is configured as specifiéidction 3.4. It
is equipped with the following two subgoal-clue tuples, gthnaturally follow from
the problem and the reward definition:

1. Subgoal Minimize distance.
Clue: An action is moving the predator towards this subgoal if dtuees the
distance between the predator and the prey.
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2. Subgoal Minimize exposure.
Clue: An action is moving the predator towards this subgoal if dr@ases the
predators’ coverage of the prey.

Note that these subgoals make use of the same domain knenéeddthe reward
calculation. Hence, they do not require any additionalrgeimwledge assuming that
the reward definition is provided by the agent designer agywations are attached
to a currently recorded plan as long as they move the ageatdswhe plan’s subgoal
and towards Q-values larger than that one of its first stefs ddnforms to the default
implementation. The minimum length of plans to be activase@o steps. Hence, no
knowledge about the domain that is not known to the reinfoer learner anyway
has been exploited so far.

5.3.2 Control experiments

We first demonstrate that the adoption af$itself without any additional prior knowl-
edge in this domain already leads to improved performancigated by the observed
variables that were identified in Section 5.2. The followangdator configurations are
evaluated:

CNTL- 0 A plain FALCON setup as described above.

CNTL- 1 A setup with ALCON and Rss, where the latter applies a fully informed
state description that consists of the exact positions laiggnts on the grid.
This is the configuration of original work ond3.

CNTL- 2 A setup with FALCON and Rss, where the latter applies the same gener-
alized state description as the former, namely a tuple obsx@ and bearing.
Note that this B s configuration does not require any additional knowledgé tha
is not available to kLCON. Also the subgoal-clue tuples do not require any
prior knowledge as discussed in the previous section.

From Figure 5.3, it is obvious that overall plan reuse GNIL- 1 is low and that
the number of steps and decisions never deviates signifidaoin CNTL- 0. In fact,
the difference in steps and decisions is too small to be leisim the graphs. In
contrast,CNTL- 2 requires significantly less steps to be taken for the legrpimase
thanCNTL- 0.1 Moreover, it requires significantly less decisions to betethroughout

1The difference is statistically significant until trial D and for some scattered measuring points later
with p < 0.05.



Evaluation and discussion

52

1401

1204

100 +

Steps

80+

60

401

207

—— CNTL-0: FALCON only
- CNTL-1: PGS with exact state description
CNTL-2: PGS with exposure-bearing state description

0 500

1000 1500 2000 2500 3000

Time (Trials)

(a) Average number of steps

< o o g
IS o © =)
| | | |

Plan use ratio

o
)
)

o
=]
|

—— CNTL-1: PGS with exact state description
- CNTL-2: PGS with exposure-bearing state description

© ©-0 ©-0- ©-0-00-6 9-0 -0 ©-0- ©-0- 9-0- © 0~ 8 0-© 0-C -0 ©

0

1000 1500 2000 2500 3000

Time (Trials)

500

(c) Average plan reuse

—— CNTL-0: FALCON only
- CNTL-1: PGS with exact state description
CNTL-2: PGS with exposure-bearing state description
140 4
120 4
100 +
%)
c
R=]
(%)
8
A 80+
60
401
204 ..n-g.n»aooﬁcooo-b -
0 500 1000 1500 2000 2500 3000
Time (Trials)
(b) Average number of decisions
4
lvn-()e-ﬂ-e—h—s-o—s-o—u‘}s-u-a om0 95 o
-
34 o’
= IS —Yf'
=) i Tl
c =
L 2
c
]
o
1
14
—— CNTL-1: PGS with exact state description
0 - CNTL-2: PGS with exposure-bearing state description
0 500 1000 1500 2000 2500 3000
Time (Trials)

(d) Average plan length
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almost the entire experimeftliowever, the differences are rather minor. Around 15%
of the actions performed BINTL- 2 are due to plan execution, which is a significant
difference to the plan reuse ONTL- 1. Likewise, the average length of executed plans
for CNTL- 2 increases gradually until it levels off at about 3.5 steps.

Plan use foCNTL- 1 is low because its state space is very large and a partigtdar s
ation unlikely to occur twice. Hence, its behavior does retiate significantly from
CNTL- 0 because mostly actions proposed by the reinforcementdeara performed.
In case ofCNTL- 2, the state space is mapped to a set of only 32 states, such that
significant plan reuse can indeed be observed. This confignrautperforms both
former significantly with regard to the average number gbsteerformed, especially
during the learning phase until convergence to a stableopadnce. We claim that
this is due to more plans being executed and due to their 8@aaguiding the agent
procedurally. An action sequence that was successfullifeabim a particular state is
likely to be successful in a different but similar state.tharmore, the average length
of executed plans foENTL- 2 is significantly longer than the minimum plan length
of 2. This represents a major improvement over previoudtsesa which most plans
only consisted of one step.

These observations show that® after re-engineering, is in fact able to reuse
plans sensibly, in that it does use a significant amount afplaithout reducing its
performance. The execution of plans leads to significaetyg kteps needed to catch
the prey even though (a)drelies solely on the bottom-level module for knowledge
acquisition and (b) it records plans while the bottom-laweldule has not converged
yet. The number of decisions is related to the average nuoflEeps and average
plan reuse as reasoned previously. Therefore, this pesfitenmeasure also benefits
from adopting Bson top of the plain reinforcement learner. The number ofsiens
for CNTL- 2 is significantly lower than foENTL- 0 and hence computational costs are
saved. However, the advantage gain over the number of stepgor because plan
reuse in general is still only about 15% fQXTL- 2.

One could argue that the improvements in learning time atdit by the aver-
age steps needed to catch the prey could have possibly bemvextt by tuning the
FALCON module itself. We cannot disprove this claim because weired from
optimizing the 13 real-valued parameters apart from whalejsicted in Figure 5.2.
Note that the Bs configurations introduced above, in fact, do not require myr
knowledge. It can be concluded that®by itself can be a valuable addition to a

2The difference is statistically significant for all measwgripoints apart from those at trials 2,500 and
2,700 withp < 0.05.
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Figure 5.4: The ration of plans recorded in a specific timerirgtl and reused in
another specific time interval f@NTL- 2.

reinforcement learning algorithm as a substantial imprueet for learning time. This
should especially be valuable if a function approximatarsed to represent the value
function. Function approximators usually come with a langember of additional
parameters to be considered for optimization. It is suradytlwwhile to save time on
this possibly cumbersome effort. Nevertheless, we noteotbservations could result
from the specific task definition used here alone.

Still, there is surely space for further improvements. Ohéhese arises from a
closer observation of the relationship between recordimg and execution time of
plans. Figure 5.4 depicts the ratio of plans recorded in aipéime interval of the
experimentsand reused in another specific time interval. On both axes, thphyr
shows the sequencesf CNTL- 2. Both scales are split into 20 equally large intervals.
Each of the shaded boxes belongs to a certain combinatiomoobt these intervals.
The color of a box indicates the ratio of plans that were (@need in the time interval
denoted by the position of the box on the y-aaied (b) reused in the time interval

3As explained in Section 5.2, a sequence is a particular tuthd concatenation of all trials that were
run in an experiment.
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denoted by the position of the box on the x-axis. Darker \&t@@respond to a larger
number of plans for that interval combination. For examitie sixth box from the left
indicates the ratio of plans that were recorded roughly betwsequence 80,000 and
100,000 and were reused sometime later in the same intditvaldata was generated
for the conjunction of all 30 experiment runs.

In Figure 5.4, there are only shaded boxes on the main dihgdhat means that
plans were never reused in another time interval than inithathich they were
originally recorded. In that, only recently recorded plams reused throughout the
entire life cycle of the predators. This means that plansimegal do not have a long
life time, not even after the reinforcement learner has eayed to an optimal policy.
Then at the latest, &s should, in fact, start recording plans that are effectivéhim
long run. We assume that the plan confidence update as weikgsldan selection
mechanism require improvement in order to allow useful planreside in the plan
libraries for a longer time. We reason that the state desaniused INCNTL- 2 is too
abstract. Obviously, it does not capture all relevant $tébemation. For example, the
positions of other predators are not accounted for at alis lénders a plan reusable
in a number of situations, in which its application is adyaot worthwhile. This
will lead to the plan being executed in an inappropriateasitutn soon, thus resulting
in a negative confidence update early. In general, morelderaan selection can be
expected to lead to a more efficient plan reuse. Such impremtstmight also lead
to increased plan length and plan reuse growing over timehndannot be observed
yet. They will be — amongst others — the topic in the followsuipsection.

5.3.3 Integrating prior knowledge

In Section 3.5, we identified four distinct parts of the$algorithm that we consider
amenable to the integration of prior knowledge. We decidethtestigate two of
these in detail: One of them concerns the selective reuskas pvhile the other one
concerns the prior content of the agent’s plan librariegshBwe to be evaluated in this
section.

Guiding the plan selection

So far, Rsswas restricted to the same state description thatBeN applies in order
to show that it is a valuable addon in this domain without eitjplg any inherent
advantage. The usefulness of plans, however, is more gltisel to their specific
context condition than is the usefulness of a single act®alageady noted by Jong
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et al. (2008). Hence, it is of interest to apply a more finargre state description and
thus to achieve a more sensible plan reuse. A fully deseeigiate, however, cannot
reasonably be adopted because in more realistic statessppasesery unlikely that

a certain situation exactly occurs again. As recognizedrbethis already holds in
the pursuit domain as well. Therefore, methods of statgatigin should be applied
in order to enable a proper reuse of plans. It is not the imenf this work to
discuss this field but rather to show thai $exposes a convenient hook for integrating
knowledge about state similarity into the plan selectiorcpss.

We implemented three simple state abstraction mechanismhguide the decision-
making in the plan selection process on whether a certaim iplapplicable in the
current situation. The first approach, later referred t&BATE- 0, is based on a
fully informed state description consisting of the exacsipons of all agents. We
assume that different features in the state descriptiomfadéferent importance for
decision-making. For example, in order to reuse a plan intaicesituation, it is less
important that the positions of other predators match tligira precondition than
that the predator’'s own and the prey’s position match withdtiginal precondition.
To implement this idea, we slightly altered the definitiorcohfidence as introduced
in Chapter 3. A plan’s confidence is now also defined for stsitedar to the original
precondition, with similarity holding if:

e the Manhattan distance between the predator’s actualigosind its position
in the plan’s precondition is smaller than 3, and

¢ the Manhattan distance between the prey’s actual positidritsposition in the
plan’s precondition is smaller than 3, and

e the sum of Manhattan distances between all other predadotsal positions
and their positions in the plan’s precondition is smallemtl.

The second state abstraction approach, which we will refas§TATE- 1, requires
a more detailed introduction. It also relies on a redefinibbthe confidence of a plan
but is only based on the abstracted state description usgdlin 2. From a domain-
expert’s point of view, states are similar if they exhibingar values for exposure
and bearing. To make use of that knowledge, we define the emuédvalue of a
plan as a two-dimensional, asymmetric Gaussian in the speee with its center at
the plan’s context condition. Note that this is reasonalgliee lhecause similar states
are indeed defined by similar numerical values in the stagerg#ion. This approach
allows the agent to have the most confidence in reusing a plarfinds itself in
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Figure 5.5: lllustration of the Gaussian state abstractiinis example shows a two-
dimensional state space and the Gaussian confidence of sigleatized
by a contour plot. For different directions from the centéthe plan’s
precondition, different confidence values apply. For examime plan is
more likely to be reused in states with smaller x- and y-valian with
larger ones.

the same situation as during plan recording. It is somewisgtiied by radial-basis-
function networks, which typically map an input vector to @mber of Gaussians,
thus defining its membership to the clusters or classesibdedcby these Gaussians
(Moody and Darken, 1989). The idea is illustrated in Figurg. 5It leads to the
following definition for a plan’s confidence:

Definition Let x be the state vector for the current situatipnthe state vector for
the plan’s precondition, ani—* a placeholder for two different covariance matrices



Evaluation and discussion 58

(entries unequal to zero only on the main diagonal), one atlwis applied ifx, < 1
and the other elsewise, then

confidence= amplitudex exp{—%(x— W' (x— u)}

determines the confidence in executing the plan in situation

It is obvious that the update rule for reinforcing and pegiadj the confidence of
a plan has to be adjusted. The calculation proposed relidgeeoassumption that a
successful or unsuccessful execution of a plan should hawe-dold implication:
First, it should reinforce or penalize the overall confideit the plan. Second, it
should reinforce or penalize the confidence in applying the m situations similar
to this execution. An execution further away from the oraiprecondition should
have a larger impact on th@aussian’s variancesf dimensions in which it differs
from the plan’s precondition. An execution of a plan in a&iton rather similar to its
precondition, in contrast, should have a larger effect @averall confidence in the
plan, represented by tlnplitudeof the Gaussian. The update rule for incrementing
the confidence is presented in Algorithm 3. The decremest isukimilar. A con-
fidence update basically generalizes or specializes thiicappn context of a plan.
This is similar to the rule refinement at the top-level modnl€LARION (Sun et al.,
2005). If a plan execution achieves a reward that is larger that one gained when it
was recorded, the precondition of the plan is changed to tire successful situation.

Note that there is no learning rate. This turned out to yiedtid results in this
domain. Yet, it should generally lead to an adverse, oscijabehavior because a
predator would repeatedly try a plan in a situation moreedit from its original pre-
condition even though that one was already found unsuitdille Gaussian amplitude
of every plan is initialized with 1 and the variances with The former reflects the
assumption that initially the confidence in the plan’s vakiabsolute. The latter was
chosen because it yielded the best results.

STATE- 1 relies on the imprecise exposure-bearing state descriptie expect
that a more informed description can lead to a further im@nosnt of plan reuse.
Hence, we define another experimesiATE- 2, in which the Gaussian approach as
described above is applied to the exact state descriptioristing of the positions
of all agents, which is also used BWTL- 1. Obviously, similar numerical values for
a certain dimension correspond to similar positions anatéesmilar states, which
renders the Gaussian state abstraction suitable to tiesdeacription. The Gaussian
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Algorithm 3 The reinforcement method for plans with Gaussian confidence

Require: The real-valued vectanewSituationdescribing the situation for which to
test the confidence in applying this plan and the real-valgstor precondition

of same length describing the situation in which the plan reasrded.
confidencefewSituatioh

1 amp= confidencepreconditior)
2: var=1.0—amp
3: amplitude= min(1,amplitude+ amp)
4: for i in [0..(length(newSituation — 1)] do
5. if precondition > newSituationthen
. -1, 1
6: =2 xe
7. else
1.1
8: Seiii=2eixe
9: endif
10: end for

amplitude of every plan is initialized with 1 again but vaigas with 0.5. The latter
was found to be reasonable in exploratory experiments.

The performance TATE- 0, STATE- 1 andSTATE- 2 in comparison t&NTL- 0 and
CNTL- 2 is shown in Figure 5.6. It is obvious that the number of stepb @ecisions
for STATE- 0 does not deviate significantly fro®©NTL- 0. In fact, the difference is
too minor to be visible clearly. FABTATE-1 and STATE- 2, however, a significant
improvement in the average number of steps can be observéteftearning phase.
The improvement in the number of decisions is eminent thmougthe entire exper-
iment® STATE- 0 shows hardly any plan reuse at all WhB&ATE- 1 and especially
STATE- 2 show a significant plan reuse throughout all times of the expnts. For
both configurations, plan reuse starts with optimistic galthat slightly decrease.
It levels off at around 30% foBTATE-1 and around 38% foBTATE-2. Average
plan length converges to about 2.3 for both configuratioas épply the Gaussian
abstraction. It converges to about 3.5 for those configumatthat apply the exposure-
bearing state description.

We conclude that the general performanc&TATE- 0 is not significantly different

to that of CNTL- 0 because hardly any plan reuse is observed. Hence, there is no

improvement oveCNTL- 1 with regard to plan execution. In contrast, dynamically

“4For STATE- 1, the improvement is statistically significant for the fir€09trials with p < 0.05. For
STATE- 2, it is significant for the first 700 trials.
5The improvement is statistically significant wih< 0.05 for all measuring points.
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adapting the conditions under which a plan is applicablensg@omising. The results
for STATE- 1 andSTATE- 2 show a large improvement especially in plan reuse, which,
inturn, leads to a shortened exploration phase. This st claim that exploration
can be guided by a proper reuse of plans. However, plaBBATE- 1 still do not have

a long life time as can be seen in Figure 5.7a. As reasoneibpsdy, we assume this

to be a general problem of the abstraction degree of the axp@sd bearing state
description.

However, in Figure 5.7b, there are not only shaded boxesemtin diagonal for
STATE- 2. For most of the boxes on the main diagonal, there are alse thir four
boxes shown for later intervals on the x-axis but for the sartexval on the y-axis.
That means that plans in general are not only reused in thesane interval they
were recorded, but also in three or four later intervalsll, flians show the largest
reuse more recently after their recording, which can beieéefrom the fading colors
of boxes at later execution intervals. Obviously, the Ihkabd of a plan to be reused
decreases with its age. Nevertheless, plan$STeiE- 2 have a generally longer life
time than plans fo€NTL- 2 andSTATE- 1. We argue that this is caused by their usage
of a more informed state description. The state descripgads to plans being less
often reused in situations majorly different from the ptantiginal and successful
recording than is the case for less informed and more alsti@e descriptions.

Priming the plan library

The intention of the second prior knowledge extension iseiorelase the number of
average steps required instead of increasing plan reusprilived the predators’ plan
libraries with the following two different prior plans in garate experiments. Both
plans make use of the fully informed state description ardagxinsight knowledge
of the path of the prey. They make use of the weakness of tlyetlpagit only moves
if it can follow its deterministic path. If a predator blockse prey’s way, the prey
simply does not move in that turn.

PRI OR- 0 This plan has a very high confidence if the predator is the only on
the prey’s path. In that case, it basically overrides the-llevel behavior and
does not move anymore. The predator will block the prey, dnseeventually
reached by it. That makes surrounding the prey easier fquréndators.

PRI OR- 1 This plan has the same activation conditiorPBISOR- 0 but it calculates a
plan that moves the predator towards the prey along itsctaje The predator
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freezes once it stumbles upon the prey. It will basicallydléa a blocking
position earlier.

Neither of these plans is reinforced nor penalized becagseamted to encourage
their reuse solely for the sake of a faster learning time.olil be generally possible,
though, to “unlearn” such prior plans once they turn out amlé worse results than
the reinforcement learner would achieve. This is the aqiugbose of the update of
the plan’s confidence. Note that explicit communicationldoth plans is not neces-
sary. The activation is only triggered on the basis of theopinedators’ positions. For
both experiments, the state abstraction for all other Edhplans iSSTATE- 1 because
it exhibits the best performance with regard to the averagess The indicators for
plan reuse, plan length and number of decisions are leggdtitey here because plan
reuse is artificially boosted. Hence, we compare the averagier of steps between
the STATE- 1 configuration and both prior knowledge configurations (Sgere 5.8).

It can be seen that predators applying these prior knowlpldges require less steps
than previous configurations during the crucial learningsgh However, as soon as
the other configurations reach a better policy, this adggntarns into a disadvantage.
This underlines the need for a possibility to “unlearn” primowledge. This is in
line with the results of McGovern et al. (1997) who obsenvedt the influence of
prior knowledge macro-actions or plans can be adverse guostige depending on
their quality. The initial speedup observed here might sedvious because we
“told” the predators how to solve the problem but it has to bglkasized that only
very little knowledge was injected to the system. In face thsk requires four
predators to implicitly coordinate their actions to reakhit goal. We only provide
them with a hint about the prey’s behavior, which had a largpact on their initial
performance. Moreover, to specify this plan requires mesi kffort than tweaking
the reinforcement learner’s parameters and Q-value liaéi#ons to achieve the same
behavior. It should become clear from this example that ragéinowledge to a
reinforcement learner in a higher-level language mightddeable and is worth further
investigations.

5.3.4 Further considerations

We conducted further experiments, three of which we consaée of interest here.
The first one addresses the question of what are the advantiageeinforcement
learner gains from plan execution. The second one spedtificakstigates the influ-
ence of varying degrees of uncertainty in the environmertherbenefit of deploying
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Figure 5.8: The average number of steps of previous predatofigurations and

configurations that are supplied with prior knowledge plianthe pursuit
domain. Values are averaged over the most recent 100 trials.

PGs. The third one applies®sto a FALCON module that uses alternative Q-learning
parameters to support our results.

The impact of plan execution on the reinforcement learner

We saw previously that applyingd has a positive influence on the performance of
the predators. We also noted in Section 3.4 thatdoN is in fact learning during the
execution of plans. Hence, we hypothesize that its valuetion benefits from a pre-
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Figure 5.9: The average number of steps of various predatdigurations with Bs
switched off after 600 trials in the pursuit domain. Values averaged
over the most recent 100 trials.

vious application of plans. To test this hypothesis, we a\gg CNTL- 2, STATE- 1 and
PRI OR- 1, and switched the ®s module off after 600 trials such that from then on only
the FALCON module was working. According to our assumptions, the parémce

of these predators should still outperfo@NTL- 0 — the plain ALCON configuration.
The values for average steps are shown in Figure 5.9. Thagweateps needed for
the Rss configurations is significantly smaller than f@TL- 0 but only until the s
modules are switched off.
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The simulation results do not support our hypothesis — ndrnleeoPG s configura-
tions exhibits a better performance thaMiL- 0 after the application of plans. Surely,
a problem in the implementation cannot be ruled out. Howdvewmn et al. (2000)
provide an explanation for this observation. They note ¢hatinforcement learner
needs to be able to represent the knowledge that is traedffrom another controller,
which is in this case specified by plans. Two factors need todmesidered:state-
space deficiencgndrepresentational deficiencylhe first one denotes the failure of
a reinforcement learner to benefit from prior knowledge #milies a more powerful
state description. In fact, this holds f8TATE-1 and PRI OR- 1 because the state
description originally introduced f@TATE- 1 is more powerful than that @NTL- 0. A
reinforcement learner suffers from a representationatigeity if its decision-making
is not powerful enough to represent that one used by thetagegrior knowledge.
This especially holds foPRI OR- 1, whose execution follows comparably complex
rules. In fact, actions in any plan are selected based orritjie@ decision to execute
the plan. This means that decision-making waives the Mapkoperty, which the re-
inforcement learner, in contrast, assumes to hold. Hene&an assume that the rein-
forcement learner cannot learn from any plans in the abovsioreed configurations.
All speedup observed previously is thus only a result ofrmigting the execution of
the reinforcement learner’s policy. The advantage of tampabstractions reported
by McGovern et al. (1997) cannot be achieved here becausgémt’s reinforcement
learner does not backup Q-values from the plans’ last statdseir first ones. Only
intermediary one-step standard Q-learning propagatiomperformed. Nevertheless,
the general speedup observed here is real even though ibdeesisly not affect the
reinforcement learner.

The impact of varying uncertainty on the benefit of plan reuse

In the experiments presented previously, the advantageeoRts configurations to

the FALCON-only one varies with the availability and quality of priondwledge as

seen when priming the plan library as well as with plan renggeneral. In the case of
prior knowledge plans being used, the advantage later totos disadvantage. We
reasoned previously that the success of plan executiordafsnds on the predictabil-
ity of the environment. In contrast to plans, open-loopges can regularly sense the
environment and decide on a new course of actions, whicls ghem an advantage
when coping with uncertainty in the environment. Constamsig and reasoning,
however, might not be possible in resource-bounded adgeattate required to behave
in a reactive manner. A closed-loop policy such as a planpitrast, commits to
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Figure 5.10: The average number of stepsChfL-0 and STATE-1 for different
degrees of predictability of the prey in the pursuit domaifalues are
averaged over the most recent 100 trials.
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multiple actions at once and follows this decision blindtysaves the agent resources
for other purposes than reasoning.

This lets us assume that if the prey exhibits a less predetahavior than consid-
ered previously, we expect plans to be less effective. Ineti it becomes less
likely that a previously successful action sequence isaldtiagain. To test this
hypothesis, we deployed the three prey types that are descin Section 5.3 and
that vary with regard to their predictability. For each oéri, we compared the
FaLcoN-only configuration CNTL- 0) with the Res one that applies a Gaussian state
abstraction on the exposure-bearing state descripbilE- 1). We hypothesize that
the benefit of adopting &s additionally to a reinforcement learner is proportional to
the predictability of the prey with regard to the averag@steceded to catch it.

The results are shown in Figure 5.10. Indeed, the advantafe aybrid approach
over the ALCON-only model varies with the degree of predictability of tireyp The
more predictable the prey behavior is designed, the lagyérel overall advantage of
the hybrid approach. It is noteworthy, though, that theqrenince advantage gained
by adopting s is almost as large for the nondeterministic circle prey ds for
the deterministic one. This lets us assume that plans canmeside guidance and
partial solutions if the behavior of the environment is natnpletely predictable.

Hence, we can identify three factors that affect the adggntdithe hybrid approach
over the pure reinforcement learner: The first one concémmsinount and quality of
prior knowledge added to the system, the second one relatbe tdegree of uncer-
tainty in the environment, and the third one to plan reuseeimegal. A fourth factor
of more theoretical nature shall be mentioned briefly. Imgsgéep, the ELCON-only
predators have to sense the environment and come to a deoisiahich action to
take next. There are, however, domains that require a hrglhlgtive behavior. In that
case, constant sensing and reasoning would not be pogddiaking a decision might
then have a cost that exceeds that one for taking an actisaclf a cost was reflected
in the model, the advantage of the hybrid approach would beased. In contrast,
if taking an action was considered to be potentially expensompared to making a
decision, the advantage would be decreased.

Alternative FALCON parameters

Finally, we show that qualitatively similar results for tegperiments above can be
obtained with more realistic Q-learning parameters thatatadepend on knowledge
about the convergence time of the reinforcement learneres@laree = 0.1,a =
0.05y = 0.9, with € being fixed. A comparison 0ENTL- 0, CNTL- 2, and STATE- 1
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for these parameters is given in figure 5.11. Obviously,e¢heling speedup as for the
average number of steps needed is less substantial thamfeoys result§. However,
with plan reuse and plan length being considerable, theawgmnent in the number of
decisions is still significant.STATE- 1 does not show a larger plan length tHeNTL- 2
and even has a smaller plan reuse. This is contradictingou®gwbservations. As of
the time of writing, we do not have any explanation for thisetvation.

5.4 Taxi domain

The taxi domain, which is a & 5 tiles gridworld, is illustrated in Figure 5.12. A taxi
agent starts at a random position on the grid in each trialagsenger appears at one
of four distinct locations and seeks to go to one of these focations. Her initial
location and destination are determined randomly for etréaly The taxi agent has to
learn to pickup the passenger and deliver her to the destinaithin a certain number
of steps (here 80). In each turn, the taxi can take a step,rswtth, east or west or
pickup, or unload the passenger. As can be seen in the fidiges &re barriers on
the grid which cannot be passed. This makes the task moreudtifin the one hand,
but provides for distinct subgoals on the other. All traffetween locations on both
halves of the grid has to pass the central tiles, which tbezebbviously become
bottleneck states. Moreover, no trial can be successfhlonttsolving the following
two subtasks: navigating to the passenger and picking hethap navigating to her
destination and unloading her.

Research in option discovery has studied this domain taiatalalgorithms that
identify such subgoals autonomously (see Section 2.1.3)e task was originally
defined by Dietterich (1998). It has since been used in a nurobhierarchical
reinforcement learning studies (e.g. by Parr and Russ@88)l Andre and Russell
(2002) or Ozgiir Simsek et al. (2005)).

The notion of subgoals is also related t6$? However, we have noticed in Section
3.3 that this follows a different idea, which makes its aggtiion in the taxi domain
particularly difficult. Plan recording relies on contingieedback about the value of
actions taken. In the pursuit domain, for example, an actiag attached to a plan if
it reduced the exposure of the prey or the distance betweepréddator and the prey.

6For ONTL- 2 andSTATE- 1, the improvement is statistically significant for the fir02trials withp <
0.05. FOrSTATE- 1, it is also significant for the trials 600 to 1,200.

"Both for CNTL- 2 and STATE- 1, the improvement is statistically significant for all medsg points
with p < 0.05.
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Figure 5.11: The performance @NTL-0, CNTL- 2, and STATE- 1 for alternative Q-
learning parameters in the pursuit domain. Values are gedraver the
most recent 100 trials.
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A D

Figure 5.12: The taxi domain with the 4 possible passengatilans and destinations.

Such information is not readily available for all state siions in the taxi domain.
Because of the barriers, the shortest way, for example,itkaerenecessarily the best
one nor possible at all. To reach the overall goal, the agestditake actions that seem
to be adverse at first. This would especially be a probleneigiid had an even more
complex, maze-like structure. In these cases, the reiafioent learner also has to rely
on backing up Q-values from the goal alone because inteemetéwards cannot be
defined reasonably. The agent needs to reach the goal firstegide a reward to start
exploring the state space selectively. Because we caneatclidentify subgoals in
the sense of @s, we have to slightly bend their definition here. We specifyngle
subgoal that records a plan as long as actions move the ageards the Q-value
gradient:

1. Subgoal Maximize Q-value.
Clue: An action is moving the predator towards this subgoal if theaue of
the new state is greater or equal than that of the previous one

This means basically that the agent extracts trajectorim® the Q-table. It also
entails that plans do not have any meaningful subgoal arginwhich waives the
advantage of easier knowledge inspection by experts. Tt of the subgoal-
clue tuple makes use of the fact that transitioning to a sidtte a higher Q-value
conforms to transitioning to a state from which on largerarig are expected. In this
scenario, this means getting closer to the goal. This sudmhoa definition simply
constrains the general assumption that only actions lgadirstates with higher Q-
values than thdirst action are appended even further. Effectively, it forcemplto
walk along a Q-value gradient, which, however, does not nedx the optimal one.
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This definition renders the process in these experimentseee similar to learning
plans in GARION, which we discussed in Section 2.2.

Apart from not being able to provide immediate feedback tmas, the problem is
simple compared to the pursuit domain. The environmenitalicstThe taxi agent is
the only active entity and the outcomes of its actions arerdghistic. With 5 possible
passenger locations including the passenger being on béadossible destinations
and 5x 5= 25 possible taxi positions, the state space consists ofonl/x 25= 500
states. Because of that, neither the reinforcement leammePGs have to apply a
state abstraction to cope with this taskc$is configured as defined in Section 3.4.
The reinforcement learner is provided by standard Q-legrmiith a table-based Q-
function® Its learning parameters are again= 0.1,a = 0.05y = 0.9. If the agent
reaches the goal, it gets a reward of 1.0. If it performs amcgessful pickup or
unload, it receives a reward of0.5. In all other cases, the reward-$.05. This
follows the reward scheme of Andre and Russell (2002).

5.4.1 Experiments

Because of the absence of uncertainty, we hypothesizeldratguse should be large.
The same should apply to the length of plans. An action sexpuirat was successful
once, is very likely to be successful again. If it is not théiropl path, then eventually
a competing action or plan will gain advantage over the p&gabse of the exploration
of PGs described in Section 3.4. Because of that, the asymptotforpgance with
regard to the number of steps should be the same fosl@®&N-only and a Bs
configuration. It should also let plan reuse and length growtinuously because
smaller plans should be substituted by longer ones fretyuehtowever, since no
state abstraction is employedg®will not contribute to the agent’s exploration such
that we do not expect any speedup during learning time.

To test these hypotheses, we deploy the following agentguanafiions:

CNTL- 0 A plain Q-learner setup as described above.

CNTL- 1 A setup with the Q-learner andd with both applying a fully informed
state description.

The results are depicted in Figure 5.13. Indeed, plan rets&sgcontinuously
to around 90% and average plan length to around 8 steps. There significant
difference observable for the average number of steps deedsolve the problem.

8The original implementation is by Stephan Mehlhase and esisuctured and adapted for this work.
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Figure 5.14: The number of plans recorded in a specific tinterval and reused in
another specific time interval f@TL- 1.

However, the average number of decisions can in the longeuaduced from around
15 per trial to around 4 by deployinga®. In general, plan reuse is much more
effective than in the pursuit domain, which is a result of éfisence of uncertainty
and the largely reduced size of the state space. This ardumalso supported by
the observation that the general life time of plans increagih time (see Figure
5.14). This indicates that plans in a way converge to a caitiygebehavior, which
we were not able to achieve in the pursuit domain. Of coulsese results are to be
expected. However, they confirm that the model is indeed iwgr&nd is reusing plans
correctly. In addition, the initial discussion on the ddfon of subgoals demonstrates
the restrictions of Bson a practical example.

5.5 Summary

The experiments show that the benefit of temporal abstradttioplans mainly de-
pends on the predictability of the environment and the tyafithe state abstraction
applied. The former is backed by common sense and previadgst The latter sup-
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ports the need for combining temporal abstraction and stagé&raction. We expand
on this discussion during the conclusion in the next chapter



6 Conclusions and future work

In this thesis, we brought together a number of concepts: M&ussed temporal
abstraction in reinforcement learning and in hybrid agewxhitectures. We also
discussed the integration of prior knowledge in reinforeatriearning. Based on this
discussion, we presented a hybrid agent architectusss, ®hich extracts temporal
knowledge in the form of plans for later reuse from a reinéonent learner. The
PGsarchitecture was reviewed carefully and its peculiaritiese identified. This led
to a number of improvements to be proposed. In particularsewght to increase
both plan reuse as well as the length of extracted plans utitmplying a major
loss in performance. In a second step, we evaluated enlfyirtba impact of plans
as temporal abstractions and as prior knowledge on therpeafice of BS agents.
In particular, we posed a number of research questions. \Weawisit them in the
next section and summarize the answers that arose duringptivee of this thesis.
Thereafter, we will touch upon opportunities for future war Section 6.2.

6.1 Research questions revisited

In the following, we will review the research questions mbseSection 1.2 by sum-
marizing the results of this thesis, both theoretical as asempirical ones.

Under what conditions can RGs successfully acquire effective plans?

There are a number of assumptions built intesPsome of which are rather strong
and are not commonly made in related work such as option wisgan reinforce-
ment learning. In particular, &s implicitly categorizes actions with regard to their
contribution to certain subgoals. This implies that thefuisess of actions has to be
decidable immediately. In fact, this is a requirement ofesuized learning that is
explicitly not made in reinforcement learning, which isrilgy rendered particularly
suitable for the application in situated agents. In domaihgre the usefulness of
actions is not directly obvious, this assumption rendess thfeasible. In such a case,
we would only be able to deployds by using a particular subgoal that is not readily

76
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interpretable by humans. However, this workaround alsegmts the extraction of
meaningful plans, which is actually a particular benefit aisP

Moreover, the original model needed to be able to predicbtiteome of actions
to decide about their contribution to subgoals. We managedhive this assumption
by reorganizing the original execution cycle. Anyway, fesd plans were generally
applied in experiments without a performance loss compiaredlain reinforcement
learner. Only in the case of a totally randomly behaving mmrnent, the reuse of
plans naturally became a general disadvantage.

How can the reuse of plans, and in particular longer plans, béacilitated?

We were able to increase plan reuse by applying differete stiastraction strategies,
which allowed plans to be reused in situations beyond thégiral preconditions.
Generally, plan reuse in experiments was significantlytgrethan in previous work
without a trade-off in performance. Likewise, the averagggth of reused plans was
increased significantly by improving the plan recording hatdsm. In particular, the
utility information for states of the reinforcement learmeas exploited to provide a
more informed utility definition for plans. However, plan®em only reused a few
times before they were dropped from the plan library agaie.rgédson that our state
abstractions were not entirely appropriate and led to gheirsg reused in unsuitable
situations too soon. Indeed, with a more carefully desigstate abstraction, plans
started to have a longer life time. This is in line with the gerh assumption that
plans or action sequences are naturally more sensitiveeto pilace of application
than single actions. Plan reuse and plan length increadedhei predictability of the
environment, becoming quite impressive for the totallydizble case. This showed
that the model indeed works as intended.

What is the impact of using plans on the overall performance?

Generally, the reuse of plans yielded a performance impneve as long as there
were temporal patterns in the behavior of the environmendt @ long as a state
abstraction was applied. Larger improvements were noteenwhe environment

was more predictable and a more advanced state abstraciisrused. In general,
the largest improvement was observed during the explorgiltase. This follows

from our argument that plans comprise more information siagle actions and are
thus a more powerful tool for exploration in unknown partdte state space. This
observation underlines the need to intertwine temporakéate abstraction. However,
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the reinforcement learner does not benefit from the generédpnance improvement
at all. In fact, knowledge was not transferred from the el module to the bottom-
level, even though the reinforcement learner is learningnduplan execution. We
reason that such effects previously observed in the opfiamsework do not occur
in PGs because of two restrictions: The reinforcement learnes aa apply value

updates over plans and the knowledge representation abpHevel is too powerful

to be mapped by the bottom-level. In addition to performainggrovements, the

number of decisions to be taken decreased significantlypwfse depending on the
level of plan reuse. This allows resource-bounded agerpsaviticular to spend time
and resources on other processes than reasoning.

How can prior knowledge be incorporated into RGS?

We have investigated two possibilities for integratingoptknowledge into BS in
this thesis: guiding the plan selection process and prirthegplan library with prior
plans as partial solutions to the problem. The former wasadly implicitly exploited
during the use of state abstraction. The latter allows feritijection of temporal
prior knowledge, which can be defined on a higher level thamifive actions. This
makes it generally more suitable as a language for spegifgiior knowledge. We
showed that prior knowledge plans can be defined under thesamne interface as
ordinary Rss plans such that they can be seamlessly integrated into gtensy The
experiments show that such knowledge — even if it is verychasian substantially
increase performance during the learning phase of the adéoiever, as soon as
the reinforcement learner has reached a better policy, dii@ndage turns into a dis-
advantage. This encourages the development of “mechahfsmsnlearning prior
knowledge, which Bs exhibits but which were not explicitly exploited in the cear
of this work.

6.2 Future work

In the following, we will outline a few possible themes foetbxtension of Bs.
PGscould be re-engineered to become a fully compliant optisnaliery algorithm.
This would generally require only two steps, namely intéggaextracted plans back
into the reinforcement learner as options and renderingreirdorcement learner
capable of learning over these options. A suitable learalggrithm was discussed
in Section 2.1.3. Such work would shed light on the questibwitether plans, as
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generated by @s, are suitable options at all. It is interesting becausedp@oach

for option discovery would follow a completely differenteid than previous work.
The latter typically identifies a possible subgoal first ahent learns a policy for
reaching it.

We have touched upon strategies for state abstraction ipt€&ha. However, there
is surely space for improvement. Applying more powerfulestbstraction techniques
could lead to a more effective plan reuse. In a second stde exets of similar
plans could be analyzed in order to find a common represeatatid a combined
precondition. This idea could be taken further by genegatinrepresentative that
consists of more powerful instructions such as loops or itimmg, which would allow
a more informed mapping of its parents’ policies. Theseasgmtatives could be
manipulated or evolved further, for example involving gemprogramming methods.

Furthermore, Bscould be deployed to more sophisticated environments, intwh
more actions are available and particular actions need wabed out in sequence
in order to have any meaning to the domain. Likewise, therapion of determin-
istic action outcomes could be waived to study the impactnottzer component of
uncertainty.
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