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Different Approaches

When we have to learn an indexable class £ = (L ;) e, we can choose the
hypothesis space as follows:

1. use L = (L,),c as hypothesis space: exact identification

2. use another enumeration of £ = (L) ;e as hypothesis space: class
preserving identification

3. use another indexable class £’ = (L) ;e as hypothesis space that contains
each L ,: class comprising identification

One could also ask for learnability w.r.t. all hypothesis spaces (absolute learning)

— until now, we considered class-comprising learning

e does it make a difference?
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Learning in the Limit

Theorem 2.2.1:

Let L € LimTxt and let H be any class comprising hypothesis space for L. Then,
there is an IIM M LimTxtz-identifying L.

Proof.
Let M’ be an IIM LimTxt;¢-identifying L.

M(t,):
If M'(t,) =7 then output “?”.
Otherwise, set j = M'(t,) and test for k = 0, . . . = whether or not

o h,(w)=h,(w)forallw & X* with |w| < x.

If such a k has been found, output the least one, otherwise output “?”.

Verification —
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Finite Learning

Theorem 2.2.2:

Let L € FinTxt and let 'H be any class preserving hypothesis space for L. Then,
there is an IIM M LimTxtz-identifying L.

Proof.

Let £ € FinTxt. By theorem 2.1.9 there are an indexing £ = (L;) ;e and a
recursively generable family (77 ) ;e of finite sets such that

e forallj € IN,7; C L;

e forallj,z € IN,if7; C L,then L, = L,

M(t,):
fz =0o0r M(t,_1) =“?", goto (*). Otherwise output M (t,_1).

(*) Forj =0,1,...,x, generate T and test whether T; C t.
If no such 3 has been found, output “?”. Otherwise, let 7 be the minimal j and search
for a 7' such that 7 C h. Output j’.

Verification —
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Finite Learning

Theorem 2.2.3:

There is an L € FinTxt and a class comprising hypothesis space H for L such that
no IIM M FinTxty-identifies L.

Proof.
L = (L;)jen with L; = {a’ }. Clearly, L € FinTxt.
Define 'H as follows:

{a*} - (k) =2
hay =  {a", 070} - i (k) | and ¢p(k) # =
{a"} . otherwise

An IIM M FinTxt-identifying £ could be used to solve the halting problem:

On input £ do:
ko k

Feed the text a*, a®, a®, ... to M until it outputs a hypothesis of form (k, x).
If ¢r(k) = x, then output 1, otherwise output 0.

Verification —
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Conservative Learning

Theorem 2.2.4:

There is an £ which can be conservatively learned, but only if the hypothesis space
used is class comprising.

Theorem 2.2.5:
There is an L for wich

e there exists a class preserving hypothesis space H and an IIM M, such that M
ConsvTxty-identifies £

e there exists a class preserving hypothesis space H’' such that no IIM M
ConsvTxty-identifies £

proofs: see [2]
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Summary

For learning in the limit:

® exact, class preserving, class comprising, absolute class preserving, and
absolute class comprising learning are of the same power

For conservative learning:

® absolute class preserving learning “C” class preserving learning “C” class
comprising learning

For finite learning:

® absolute class preserving, class preserving, and class comprising learning are of
the same power

® absolute class comprising learning “C” class comprising learning
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