Information Extraction

• **Definition** (after Grishman 1997, Eikvil 1999):
 "The identification and extraction of instances of a particular class of events or relationships in a natural language text and their transformation into a structured representation (e.g. a database)."
 - IR retrieves *relevant documents* from collections
 - IE retrieves *relevant information* from documents

• **Example:** **AutoSlog** (Riloff)
 - input:
 - general syntactic patterns
 - annotated (marked-up) training documents
 - output:
 - instantiated patterns that extract particular information
 - **Autoslog-TS:** Extension that replaces need for annotated corpus with manual post-processing of sorted pattern list

• **On the Web:** natural language text \rightarrow (semi-)structured text
Extracting Job Openings from the Web

foodscience.com-Job2

JobTitle: Ice Cream Guru
Employer: foodscience.com
JobCategory: Travel/Hospitality
JobFunction: Food Services
JobLocation: Upper Midwest
Contact Phone: 800-488-2611
DateExtracted: January 8, 2001
Source: www.foodscience.com/jobs_midwest.html
OtherCompanyJobs: foodscience.com-Job1

If you dream of cold creamy chocolate or ooey-gooey cookie, there's a great opportunity for you to maintain and expand this major corporation's high-end ice cream brand. Will be based in the Upper Midwest or about a year. After that, California here I come!
Requires a BS in Food Science or dairy, plus ice cream formulation experience. Will consider entry level with an MS and an internship.
Contact: icecream@foodscience.com
1-800-488-2611
Job Openings

Job Openings

- **Web Jobs**: FlipDog technology has found these jobs on thousands of employer Web sites.

<table>
<thead>
<tr>
<th>Job Title</th>
<th>Company</th>
<th>Location</th>
<th>Date</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Pantry Workers</td>
<td>Lutheran Social Services</td>
<td>Archbold, OH</td>
<td>October 11, 2002</td>
<td>Archbold, OH</td>
</tr>
<tr>
<td>Cooks</td>
<td>Lutheran Social Services</td>
<td>Archbold, OH</td>
<td>October 11, 2002</td>
<td>Archbold, OH</td>
</tr>
<tr>
<td>Bakers Assistants</td>
<td>Fine Catering by Russell Morin</td>
<td>Attleboro, MA</td>
<td>October 11, 2002</td>
<td>Attleboro, MA</td>
</tr>
<tr>
<td>Baker's Helper</td>
<td>Bird-in-Hand</td>
<td>United States</td>
<td>October 11, 2002</td>
<td>United States</td>
</tr>
<tr>
<td>Assistant Baker</td>
<td>Gourmet To Go</td>
<td>Maryland Heights, MO</td>
<td>October 11, 2002</td>
<td>Maryland Heights, MO</td>
</tr>
<tr>
<td>Host/Hostess</td>
<td>Sharis Restaurants</td>
<td>Beaverton, OR</td>
<td>October 10, 2002</td>
<td>Beaverton, OR</td>
</tr>
<tr>
<td>Cooks</td>
<td>Alta's Rustler Lodge</td>
<td>Alta, UT</td>
<td>October 10, 2002</td>
<td>Alta, UT</td>
</tr>
<tr>
<td>Line Attendant</td>
<td>Sun Valley Corporation</td>
<td>Huntsville, UT</td>
<td>October 10, 2002</td>
<td>Huntsville, UT</td>
</tr>
<tr>
<td>Food Service Worker II</td>
<td>Garden Grove Unified School District</td>
<td>Garden Grove, CA</td>
<td>October 10, 2002</td>
<td>Garden Grove, CA</td>
</tr>
<tr>
<td>Night Cook / Baker</td>
<td>SONOCO</td>
<td>Houma, LA</td>
<td>October 10, 2002</td>
<td>Houma, LA</td>
</tr>
<tr>
<td>Cooks/Prep Cooks</td>
<td>GrandView Lodge</td>
<td>Nisswa, MN</td>
<td>October 10, 2002</td>
<td>Nisswa, MN</td>
</tr>
<tr>
<td>Line Cook</td>
<td>Lone Mountain Ranch</td>
<td>Big Sky, MT</td>
<td>October 10, 2002</td>
<td>Big Sky, MT</td>
</tr>
<tr>
<td>Production Baker</td>
<td>Whole Foods Market</td>
<td>Willowbrook, IL</td>
<td>October 8, 2002</td>
<td>Willowbrook, IL</td>
</tr>
<tr>
<td>Cake Decorator/Baker</td>
<td>Mandalay Bay Hotel and Casino</td>
<td>Las Vegas, NV</td>
<td>October 8, 2002</td>
<td>Las Vegas, NV</td>
</tr>
<tr>
<td>Shift Supervisors</td>
<td>Brueggers Bagels</td>
<td>Minneapolis, MN</td>
<td>October 8, 2002</td>
<td>Minneapolis, MN</td>
</tr>
</tbody>
</table>

Peter Norvig Robert Wilensky University of California, Berkeley Computer... Thirteenth International Conference on Computational Linguistics, Volume 3

Abstract: this paper we critically evaluate three recent abductive interpretation models, those of Charniak and Goldman (1989), Hobbs, Stickel, Martin and Edwards (1988), and Ng and Mooney (1990). These three models add the important property of commensurability: all types of evidence are represented in a common currency that can be compared and combined. While commensurability is a desirable property, and there is a clear need for a way to compare alternate explanations, it appears that a single scalar measure is not enough to account for all types of processing. We present other problems for the abductive approach, and some tentative solutions. (Update)

Context of citations to this paper: More

... (break slight modification of the one given in Ng and Mooney, 1990) The new definition remedies the anomaly reported in [Norvig and Wilensky, 1990] of occasionally preferring spurious interpretations of greater depths. Table 1: Empirical Results Comparing Coherence and...

... costs as probabilities, specifically within the context of using abduction for text interpretation, are discussed in Norvig and Wilensky (1990). The use of abduction in disambiguation is discussed in Kay et al. 1990) We will assume the following: 13) a. Only literals...

Cited by: More
Translation Mismatch in a Hybrid MT System - Gawron (1999) (Correct)
Abduction and Mismatch in Machine Translation - Gawron (1999) (Correct)
Interpretation as Abduction - Hobbs, Stickel, Appelt, Martin (1990) (Correct)

Active bibliography (related documents): More All
0.1 Critiquing Effective Decision Support in Time-Critical Domains - Germer (1995) (Correct)
0.1 Decision Analytic Networks in Artificial Intelligence - Matzkevich, Abramson (1995) (Correct)
0.1 A Probabilistic Network of Predicates - DeRose, Lin (1992) (Correct)
What is “Information Extraction”

Filling slots in a database from sub-segments of text.

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill Gates railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a “cancer” that stifled technological innovation.

Today, Microsoft claims to "love" the open-source concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels—the coveted code behind the Windows operating system—to select customers.

"We can be open source. We love the concept of shared source," said Bill Veghte, a Microsoft VP. "That's a super-important shift for us in terms of code access."

Richard Stallman, founder of the Free Software Foundation, countered saying…
What is “Information Extraction”

As a task:

Filling slots in a database from sub-segments of text.

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill Gates railed against the economic philosophy of open-source software with Orwellian fervor, denouncing its communal licensing as a “cancer” that stifled technological innovation.

Today, Microsoft claims to "love" the open-source concept, by which software code is made public to encourage improvement and development by outside programmers. Gates himself says Microsoft will gladly disclose its crown jewels—the coveted code behind the Windows operating system—to select customers.

"We can be open source. We love the concept of shared source," said Bill Veghte, a Microsoft VP. "That's a super-important shift for us in terms of code access."

Richard Stallman, founder of the Free Software Foundation, countered saying…
Landscape of IE Tasks (1/4):
Degree of Formatting

Text paragraphs
without formatting

Grammatical sentences
and some formatting & links

Non-grammatical snippets,
rich formatting & links

Astro Teller is the CEO and co-founder of BodyMedia. Astro holds a Ph.D. in Artificial Intelligence from Carnegie Mellon University, where he was inducted as a national Hertz fellow. His M.S. in symbolic and heuristic computation and B.S. in computer science are from Stanford University. His work in science, literature and business has appeared in international media from the New York Times to CNN to NPR.

Dr. Steven Minton - Founder/CTO
Dr. Minton is a fellow of the American Association of Artificial Intelligence and was the founder of the Journal of Artificial Intelligence Research. Prior to founding Fetch, Minton was a faculty member at USC and a project leader at USC’s Information Sciences Institute. A graduate of Yale University and Carnegie Mellon University, Minton has been a Principal Investigator at NASA Ames and taught at Stanford, UC Berkeley and USC.

Frank Huybrechts - COO
Mr. Huybrechts has over 20 years of

Tables

9:30 - 10:00 AM	Coffee Break				
10:00 - 11:30 AM	Technical Paper Sessions:				
Cognitive Robotics	Logic Programming	Natural Language Generation	Complextity Analysis	Neural Networks	Games
Ermila Remoldina and Benjamin Kaipers	Marc Denecker, Antonis Kakas, and Bert Van Nuffelen				
Barto, Andrew G. (413) 545-2109 barto@cs.umass.edu CS276					
Professor. Computational neuroscience, reinforcement learning, adaptive motor control, artificial neural networks, adaptive and learning control, motor development.					
Berger, Emery D. (413) 577-4211 emery@cs.umass.edu CS344					
Assistant Professor.					
Brock, Oliver (413) 577-0334 oli@cs.umass.edu CS246					
Assistant Professor.					
Clarke, Lori A. (413) 545-1328 clarke@cs.umass.edu CS304					
Professor. Software verification, testing, and analysis; software architecture and design.					
Cohen, Paul R. (413) 545-3638 cohen@cs.umass.edu CS278					
Professor. Planning, simulation, natural language, agent-based systems, intelligent data analysis, intelligent user interfaces.					
549: Online-Execution of ccGolog Plans Henrik Grosskreutz and Gerhard Lakemeyer	131: A Comparative Study of Logic Programs with Preference Tarleton Schaub and Kever	246: Dealing with Dependencies between Content Planning and Surface Realization in a Pipeline Generation			
470: A Perspective on Knowledge Compilation	258: Violation-Guided Learning for Constrained Formulations in Neural-Network Time-Series				
	Adrian Davoine and Pierre Marquis				
353: Temporal Difference Learning Applied to a High Performance Game-Playing					
Landscape of IE Tasks (2/4): Intended Breadth of Coverage

Web site specific
- Formatting
- Amazon.com Book Pages

Genre specific
- Layout
- Resumes

Wide, non-specific
- Language
- University Names
Landscape of IE Tasks (3/4):
Complexity

E.g. word patterns:

Closed set
- U.S. states
 - He was born in Alabama…
 - The big Wyoming sky…

Regular set
- U.S. phone numbers
 - Phone: (413) 545-1323
 - The CALD main office can be reached at 412-268-1299

Complex pattern
- U.S. postal addresses
 - University of Arkansas
 P.O. Box 140
 Hope, AR 71802
 - Headquarters:
 1128 Main Street, 4th Floor
 Cincinnati, Ohio 45210

Ambiguous patterns,
needing context and many sources of evidence
- Person names
 - …was among the six houses sold by Hope Feldman that year.
 - Pawel Opalinski, Software Engineer at WhizBang Labs.
Jack Welch will retire as CEO of General Electric tomorrow. The top role at the Connecticut company will be filled by Jeffrey Immelt.

Single entity
- **Person:** Jack Welch
- **Location:** Connecticut

Binary relationship
- **Relation:** Person-Title
 - **Person:** Jack Welch
 - **Title:** CEO

N-ary record
- **Relation:** Succession
 - **Company:** General Electric
 - **Title:** CEO
 - **Out:** Jack Welch
 - **In:** Jeffrey Immelt
Recognizers

- Simple procedures to find pieces of information based on its appearance
 - e-mail addresses (easy)
 - telephone numbers (tricky)
 - street addresses (difficult)

- Examples:
 - Simple Web Crawlers can (and do) collect huge databases of e-mail addresses
 - Recognizers can also be used to automatically generate training examples for wrapper induction (Kushmerick, 2000)
 - A Firefox plugin can recognize phone numbers on pages and replace them with a link to the Skype dialer
Recognizers

- Simple procedures to find pieces of information based on its appearance
 - e-mail addresses (easy)
 - telephone numbers (tricky)
 - street addresses (difficult)

- Examples:
 - Simple Web Crawlers can (and do) collect huge databases of e-mail addresses
 - Can also be used to automatically generate training examples for wrapper induction (Kushmerick, 2000)
 - A Firefox plugin can recognize phone numbers on pages and replace them with a link to the Skype dialer
Recognizers

- example for an incorrect extraction

 Christine Langhammer
 für den Vorsitzenden der Berufungskommission
 O.Univ.-Prof.Dr. Peter Zinterhof

- Simple Web Crawlers can (and do) collect huge databases of e-mail addresses
- Recognizers can also be used to automatically generate training examples for wrapper induction (Kushmerick, 2000)
- A Firefox plugin can recognize phone numbers on pages and replace them with a link to the Skype dialer
- Google-Mail replaces in-line URLs with links to the site
Wrappers

- **Wrapper:** (in an Information Extraction context)
 - A procedure that extracts certain pieces of information from (semi-)structured text (HTML)

- **Examples:**
 - Comparison Shoppers (Junglee, Shopbot/Jango, mySimon)
 - Meta-Search engines (citeseer, metacrawler)
 - News Agents (google news)

- **Building Wrappers by hand:**
 - time-consuming and error-prone (=> expensive)
 - Web-sites change frequently
 - mean-time to failure of wrappers: 1 month (Weld, 1998)
 - monthly failure rates of wrappers: 8% (Norvig, 1998)
Wrapper Induction: Motivation

- **Wrappers**
 - parse the contents of several sites
- **Mediators**
 - integrate the extracted information
- **Example:**

User:
Show me reviews of Fellini movies showing in Dublin
Wrapper Induction

- Automatic generation of wrappers from a few (annotated) sample pages

- Assumptions:
 - regularity in presentation of information
 - often machine-generated answers to queries
 - same header
 - same tail
 - inbetween a table/list of items that constitute the answer to the query

- Learn the delimiters between items of interest
LR Wrappers (Kushmerick 2000)

- Very simple but nevertheless powerful wrapper class
- Assume that
 - only one "database" per page
 - information can be separated into tuples (records)
 - each tuple contains exactly k items (attributes)
- Wrapper consists of k delimiter pairs \(<l_i, r_i>\),
 - \(l_i\) and \(r_i\) are patterns that have to be matched in the text

```plaintext
repeat
  foreach \(<l_i, r_i> \in \{<l_1, r_1>, ..., <l_k, r_k>\}\)
    find next occurrence of \(l_i\)
    find next occurrence of \(r_i\)
    extract text in between and store as the \(i\)-th value for this tuple
until no more occurrences of \(l_1\)
```
Induction of LR Wrappers

Web Pages

Web Pages Labeled for Extraction

<HTML><HEAD>Some Country Codes</HEAD>

- Congo <I>242</I>
- Egypt <I>20</I>
- Belize <I>501</I>
- Spain <I>34</I>
</BODY></HTML>

Extracted Wrapper

\(\langle \langle B \rangle, \langle /B \rangle, \langle I \rangle, \langle /I \rangle \rangle \)

\(\langle l_1, r_1, l_2, r_2 \rangle \)
Induction of LR Wrappers

- **Heads:** text before first tuple for each page
- **Tails:** text after last tuple for each page
- **Separators:** text between subsequent attributes

- **Candidate delimiters:**
 - **Left:** suffixes of the shortest of all separators to the left (including heads for $i = 1$)
 - **Right:** prefixes of the shortest of all separators to the right (including tails for $i = k$)

- Among the candidate delimiters, any one that satisfies a set of constraints can be selected
 - Constraints must ensure that the wrapper does not try to extract irrelevant parts of text (false positives)
Constraints for Delimiters

- the left delimiter l_i
 - must be a proper suffix of the text before each instance of the target
 - a proper suffix of a string means that
 - it is a suffix of the string
 - and it does not occur in any other place of the string
 (so that extraction does not start too early)
 - Example:
 - cde is a proper suffix of deabcde, de is a suffix but not proper
 - l_1 must not be part of any pages tail
 - otherwise extraction of a new tuple will be started at the end
- the right delimiter r_i
 - must be a prefix of the text after each instance of the target
 - must not be part of any value for attribute i
 - otherwise extraction will terminate prematurely
A Problem with LR-Wrappers

- Distracting text in Head or Tail

\[l_1 \text{ fires} \]

```html
<html><title>Some Country Codes</title>
<body>
  <p><b>Congo</b> <i>242</i></p>
  <p><b>Egypt</b> <i>20</i></p>
  <p><b>Belize</b> <i>501</i></p>
  <p><b>Spain</b> <i>34</i></p>
  <hr>
  <p><b>End</b></p>
</body></html>
```

- an LR-Wrapper cannot learn an extractor for this case
 - every candidate delimiter for \(l_1 \) occurs in the head
 - every candidate delimiter for \(l_1 \) occurs in the tail
HLRT-Wrappers

- Head-Tail-Left-Right Wrappers:
 - learn a separate delimiter for identifying head and tail

Ignore page’s head and tail

```html
<html><title>Some Country Codes</title>
<body><b>Some Country Codes</b>
<p><b>Congo</b> <i>242</i><br>
<b>Egypt</b> <i>20</i><br>
<b>Belize</b> <i>501</i><br>
<b>Spain</b> <i>34</i><br>
</p>
<hr>
<b>End</b></body></html>
```
More Expressive Wrapper Classes

- **HLRT Wrappers:**
 - learn 2 additional delimiters to separate the head and the tail
 - ignores occurrence of l_i and r_i before h and after t
 - allows to process multiple "databases" in one document

- **OCLR and HOCLRT Wrapper:**
 - for each tuple: learn an (O)pening and (C)losing delimiter

- **N-LR and N-HLRT:**
 - allows multi-valued attributes
 - allows optional attributes
 - RESTRICTION: if a value is specified, all previous values (of this tuple) must also be specified.
Evaluation

- Study on 30 randomly selected Web-sites from www.search.com (at that time a catalogue of hubs for various topics)
 - LR Wrapper was able to wrap 53%
 - LR + HLRT wrapped 60%
 - Addition of OC wrapping did not bring improvements
 - Addition of N-HLRT improved to 70%

- LR Wrappers are not limited to HTML-documents
 - any string can be extracted for delimiters, not just HTML tags

- All wrapper classes are PAC learnable

- Constraints become hard to handle
SoftMealy (Hsu & Dung, 1998)

- Problems with LR-Wrappers:
 - no permutations of attributes allowed
 - delimiters may not be sufficient to identify texts
- SoftMealy provides a general solution to problems with
 - missing attributes
 - attributes with multiple values
 - variable order of attributes
- Approach:
 - learn a finite-state transducer (FST) that encodes all possible sequences of attributes
 - each state represents a fact to be extracted
 - dummy states are used to skip parts of text
 - use separators ("invisible" borders) instead of delimiters
 - learn to recognize separators by defining their left and right context with contextual rules (state transitions)
Labelled Web Page

-Mani Chandy, Professor of Computer Science and Executive Officer for Computer Science

-David E. Breen, Assistant Director of Computer Graphics Laboratory

Sample FST

Contextual rule looks like:
TRANSFER FROM state N TO state -N IF
left context = capitalized string
right context = HTML tag “”

Slide adapted from Chun-Nan Hsu
Wrapper Induction by Inductive Rule Learning

- Training Examples:
 - treat each slot independently (single slot extraction)
 - generate training example that represent the context of the slot (tokens before, after, and in the slot)
- Features are extracted from the context of a slot:
 - *token type*: word, number, punctuation, html-tag, ...
 - *formatting*: capitalized, italics, bold, font, ...
 - *location*: after/before line break, paragraph, ...
 - *html structure*: h1, a, href, table, td, center, ...
 - *relative position*: previous token, next token
- Learn Rules:
 - evaluate rules by counting correct matches as positive, wrong matches as negative (e.g., Laplace heuristic)
Example Systems

- RAPIER (Califf & Mooney, 1997):
 - based in a logic framework (ILP)
 - integrates some NLP (part-of-speech tags)
 - bottom-up learning with \textit{lgg}: select two examples and compute the minimal generalization that covers both

- SRV (Freitag, 1998):
 - uses a large variety of features both for structured and unstructured text
 - top-down rule learning (Ripper-like)

- Expressive, general rule learning systems (e.g., ILP) could be used as well, but would lack domain-specific optimizations
WHISK (Soderland, 1999)

- multi-slot extraction
- rules represented as perl-like regular expressions
- can handle (semi-)structured and unstructured text

- top-down rule learning with seed instance (AQ-like)
 - choose a random training example
 - start with the most general rule
 - refine the rule using heuristics as in RIPPER-like algorithms (e.g., Laplace accuracy)
 - but only with conditions that appear in the training example

- use of user-specified semantic classes
 - e.g. BEDROOM = \{brs|br|bds|bdrm|bd|bedroom|bedrooms|bed\}
- integrated with interactive training based on a simple form of active learning
Example - WHISK

Training example:

Capitol Hill - 1 bedroom twnhme. fplc D/W W/D. Undergrnd pkg incl. $675. 3 BR, 2nd flr of turn of ctry HOME. incl. gar, grt N. Hill loc $995. (206) 999-9999

Label:
- Rental:
 - area: Capitol Hill
 - bedrooms: 1
 - price: 675
- Rental:
 - area: Capitol Hill
 - bedrooms: 3
 - price 995

Starting Rule:
* (*) * (*) * (*) *

Final Rule:
(after seeing several examples):

START (*) ' -' * (DIGIT)
BEDROOM * '$' (NUMBER) *
Example - WHISK

Training example:

Capitol Hill - 1 bedroom twnhme. fplc D/W W/D. Undergrnd pkg incl. $675. 3 BR, 2nd flr of turn of ctry HOME. incl. gar, grt N. Hill loc $995. (206) 999-9999

START (*) ' -' * (DIGIT)BEDROOM * '$' (NUMBER) *

BEDROOM = {brs|br|bds|bdrm|bd|bedroom|bedrooms|bed}
Example - WHISK

Training example:

Capitol Hill 1 bedroom twnhme. fplc D/W W/D. Undergrnd pkg incl. $675. 3 BR, 2nd flr of turn of ctry HOME. incl. gar, grt N. Hill loc $995. (206) 999-9999


```
START<B> ( * ) ' -' * ( DIGIT )BEDROOM * '$' ( NUMBER ) *

BEDROOM = {brs|br|bds|bdrm|bd|bedroom|bedrooms|bed}
```
Information Extraction as a Classification Problem

- treat each text position (token boundary / token) as a classification example
 - classification is “beginning” or “ending” of annotation
 - features of examples are extracted from the context
 - similar as in inductive rule learning approach
- advantages in comparison to wrappers
 - use of powerful state-of-the-art classification algorithms
 - concentration on the actual task: extraction of useful information (feature generation)
 - no development of specialized algorithms needed
Problem Transformation: Boundaries

- Boundary classification patterns
 - INSIDE/OUTSIDE
 - BEGIN/END
 - BEGIN/CONTINUE/END
 - BEGIN/CONTINUE/OUTSIDE
- The right choice depends mainly on the type of information
 - Length of the annotations, partial results acceptable etc.
Problem Transformation: Feature Generation

<table>
<thead>
<tr>
<th>token</th>
<th>The</th>
<th>quick</th>
<th>brown</th>
<th>fox</th>
<th>jumps</th>
<th>over</th>
<th>the</th>
<th>lazy</th>
<th>dog</th>
</tr>
</thead>
<tbody>
<tr>
<td>position</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>class</td>
<td>NEG</td>
<td>START</td>
<td>NEG</td>
<td>END</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
<td>NEG</td>
</tr>
<tr>
<td>token</td>
<td>the=1</td>
<td>quick=1</td>
<td>brown=1</td>
<td>fox=1</td>
<td>jumps=1</td>
<td>over=1</td>
<td>the=1</td>
<td>lazy=1</td>
<td>dog=1</td>
</tr>
<tr>
<td>features</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>character</td>
<td>X=x+1</td>
<td>xxx=x+1</td>
<td>xxx=x+1</td>
<td>xxx=x+1</td>
<td>xxx=x+1</td>
<td>xxx=x+1</td>
<td>xxx=x+1</td>
<td>xxx=x+1</td>
<td>xxx=x+1</td>
</tr>
<tr>
<td>patterns</td>
<td>x++=1</td>
<td>x++=1</td>
<td>x++=1</td>
<td>x++=1</td>
<td>x++=1</td>
<td>x++=1</td>
<td>x++=1</td>
<td>x++=1</td>
<td>x++=1</td>
</tr>
<tr>
<td>history</td>
<td>DT=1</td>
<td>JJ=1</td>
<td>JJ=1</td>
<td>NN=1</td>
<td>NNS=1</td>
<td>IN=1</td>
<td>DT=1</td>
<td>JJ=1</td>
<td>NN=1</td>
</tr>
<tr>
<td>features</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

- representing the context
 - set-of-words, word patterns (capitalization etc.)
 - presence of formatting, location, html structure
 - part-of-speech, syntactic parsing
- windowing
 - extend of context usually given in number of words
- classification history
 - include preceding classification as feature
Information Extraction as a Classification Problem

- unbalanced number of pos. and neg. examples
 - specialized algorithms, e.g. perceptrons with uneven margins (Li et al. 2001)
 - two stage process (Finn and Kushmerick 2004)
 - second classifier is trained on the neighborhood of boundaries
 - validates and corrects decisions of first classifier

- large (and sparse) feature space
 - usually SVM are used, which deal very well with large but sparse feature vectors

- state-of-the-art for standard IE tasks
 - e.g. around 90% on seminar announcements task

<table>
<thead>
<tr>
<th></th>
<th>ELIE$_{L1}$</th>
<th>ELIE$_{L2}$</th>
<th>BWI</th>
<th>LP2</th>
<th>RAPIER</th>
<th>SNow-IE</th>
</tr>
</thead>
<tbody>
<tr>
<td>field</td>
<td>P</td>
<td>R</td>
<td>F1</td>
<td>P</td>
<td>R</td>
<td>F1</td>
</tr>
<tr>
<td>speaker</td>
<td>95.8</td>
<td>76.2</td>
<td>84.9</td>
<td>91.0</td>
<td>86.0</td>
<td>88.5</td>
</tr>
<tr>
<td>location</td>
<td>96.1</td>
<td>75.9</td>
<td>84.8</td>
<td>93.1</td>
<td>80.7</td>
<td>86.5</td>
</tr>
<tr>
<td>stime</td>
<td>99.0</td>
<td>94.4</td>
<td>96.6</td>
<td>98.6</td>
<td>98.5</td>
<td>98.5</td>
</tr>
<tr>
<td>etime</td>
<td>99.0</td>
<td>77.8</td>
<td>87.0</td>
<td>95.7</td>
<td>97.3</td>
<td>96.4</td>
</tr>
</tbody>
</table>
Information Integration

• Data Integration (Data Warehousing):
 ▪ Join different databases into a single view
 ▪ Problem: Information may be encoded in different ways

• Information Integration:
 ▪ Join information originating from different wrappers
 ▪ Problem: extracted information is still free text

• Example:
 ▪ *Data source 1*: Wrapper for Movie database
 ▪ *Data source 2*: Wrapper Local movie show times
 ▪ *Task*: Generate a page that integrates reviews into the local show times
 ▪ *Problem*: Key relation (movie titles) will not match exactly
WHIRL (Cohen 1998)

- extension of DATALOG (or SQL) database queries that allows to deal with free text
 - models the information extracted by a wrapper as a relational table
- addresses the problem that
 - wrappers may not be able to extract the exact text
 - e.g., irrelevant information (directors, ratings, actors, etc.) might be extracted with title
 - text may be formulated differently on different Web-Sites
 - e.g., order and/or abbreviations of first, middle and last names
- Approach:
 - uses vector space model to represent textual fields
 - uses *similarity literals* to specify approximate matches
- http://www.cs.cmu.edu/~wcohen/whirl/
DATALOG vs. WHIRL

- **Hard Queries:**
 - items in a join must match exactly
 - Items match or do not match
 - Return all matches satisfying the query

- **Soft Queries:**
 - items in a join need only be "similar"
 - Use cosine similarity to compute the degree of match [0,1]
 - Return the best matches according to similarity
 - Use efficient A*-like search to find the r best matches according to similarity score (r-materialization)
WHIRL - Example

- Given two wrapped relations:
 - `review(Movie,Review)`
 - `showtime(Cinema,Movie,Time)`

- Sample Queries:
 - Hard Query (DATALOG):
 `showtime(C,M,T) & review(M,R)`
 - Soft Query:
 `showtime(C,M1,T) & review(M2,R) & M1 ~ M2`
 - If the titles of the reviews could not be wrapped:
 `showtime(C,M,T) & review(R) & M ~ R`
 - Free text queries:
 `showtime(C,M1,T) & review(M2,R) & M1 ~ M2 & R~"excellent comedy with Bruce Willis"`

M1 is similar to M2
Possible answers Θ to queries Q are scored, i.e., a function $\text{SCORE}(Q, \Theta)$ is computed.

For a regular literal: $\text{SCORE}(B, \Theta) = s$

if $B \Theta$ is a ground fact, 0 otherwise

(usually $s = 1$, "degree of belief in the proposition")

For a similarity literal $X \sim Y$:

$$\text{SCORE}(X \sim Y, \Theta) = \text{sim}(X \Theta, Y \Theta)$$

Conjunctive Query $Q = B_1 \land \ldots \land B_n$

$$\text{SCORE}(Q, \Theta) = \prod_i \text{SCORE}(B_i)$$

A definite clause $\text{Head} : - B_1, B_2, \ldots, B_n$

$$\text{SCORE(Head)} = 1 - \prod_i (1 - \text{SCORE}(B_i))$$
Using WHIRL as Text Classifier

- represent labelled training documents in relation
 \[\text{train}({\text{Document}}, \text{Class}) \]
- The following clause returns labels C ordered by similarity score of D to D1
 \[\text{classify}(D, C) :- \text{train}(D1, C), D \sim D1. \]
 - NOTE: multiple ground instantiations of the head (i.e., multiple bindings to the head) are combined using the definite clause similarity score!
- very similar to nearest neighbor classification
 - minor differences in combining evidence (similarity score)
- experimentally very competitive to conventional approaches