Instance-Based Learning

- Rote Learning
- k Nearest-Neighbor Classification
 - Prediction, Weighted Prediction
 - choosing k
 - feature weighting (RELIEF)
 - instance weighting (PEBLS)
 - efficiency
 - kD-trees

- IBL and Rule Learning
 - EACH: Nearest Nested Hyper-Rectangles
 - RISE

Acknowledgements:
Some slides adapted from
- Tom Mitchell
- Eibe Frank & Ian Witten
- Kan, Steinbach, Kumar
- Ricardo Gutierrez-Osuna
- Gunter Grieser
Instance Based Classifiers

- No model is learned
 - The stored training instances themselves represent the knowledge
 - Training instances are searched for instance that most closely resembles new instance

 → *lazy learning*

- Examples:
 - Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
Rote Learning

<table>
<thead>
<tr>
<th>Day</th>
<th>Temperature</th>
<th>Outlook</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play Golf?</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-05</td>
<td>hot</td>
<td>sunny</td>
<td>high</td>
<td>false</td>
<td>no</td>
</tr>
<tr>
<td>07-06</td>
<td>hot</td>
<td>sunny</td>
<td>high</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>07-07</td>
<td>hot</td>
<td>overcast</td>
<td>high</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-09</td>
<td>cool</td>
<td>rain</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-10</td>
<td>cool</td>
<td>overcast</td>
<td>normal</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>07-12</td>
<td>mild</td>
<td>sunny</td>
<td>high</td>
<td>false</td>
<td>no</td>
</tr>
<tr>
<td>07-14</td>
<td>cool</td>
<td>sunny</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-15</td>
<td>mild</td>
<td>rain</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-20</td>
<td>mild</td>
<td>sunny</td>
<td>normal</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>07-21</td>
<td>mild</td>
<td>overcast</td>
<td>high</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>07-22</td>
<td>hot</td>
<td>overcast</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-23</td>
<td>mild</td>
<td>rain</td>
<td>high</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>07-26</td>
<td>cool</td>
<td>rain</td>
<td>normal</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>07-30</td>
<td>mild</td>
<td>rain</td>
<td>high</td>
<td>false</td>
<td>yes</td>
</tr>
</tbody>
</table>

today: cool sunny normal false yes
Nearest Neighbor Classification

<table>
<thead>
<tr>
<th>Day</th>
<th>Temperature</th>
<th>Outlook</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play Golf?</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-05</td>
<td>hot</td>
<td>sunny</td>
<td>high</td>
<td>false</td>
<td>no</td>
</tr>
<tr>
<td>07-06</td>
<td>hot</td>
<td>sunny</td>
<td>high</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>07-07</td>
<td>hot</td>
<td>overcast</td>
<td>high</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-09</td>
<td>cool</td>
<td>rain</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-10</td>
<td>cool</td>
<td>overcast</td>
<td>normal</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>07-12</td>
<td>mild</td>
<td>sunny</td>
<td>high</td>
<td>false</td>
<td>no</td>
</tr>
<tr>
<td>07-14</td>
<td>cool</td>
<td>sunny</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-15</td>
<td>mild</td>
<td>rain</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-20</td>
<td>mild</td>
<td>sunny</td>
<td>normal</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>07-21</td>
<td>mild</td>
<td>overcast</td>
<td>high</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>07-22</td>
<td>hot</td>
<td>overcast</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-23</td>
<td>mild</td>
<td>rain</td>
<td>high</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>07-26</td>
<td>cool</td>
<td>rain</td>
<td>normal</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>12-30</td>
<td>mild</td>
<td>rain</td>
<td>high</td>
<td>false</td>
<td>yes</td>
</tr>
</tbody>
</table>

| tomorrow | mild | sunny | normal | false | yes |
Instance Based Classifiers

- No model is learned
 - The stored training instances themselves represent the knowledge
 - Training instances are searched for instance that most closely resembles new instance

→ lazy learning

- Examples:
 - Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
 - Nearest-neighbor classifier
 - Uses k “closest” points (nearest neighbors) for performing classification
K-Nearest Neighbor

algorithms classify a new example by comparing it to all previously seen examples. The classifications of the *k* most similar previous cases are used for predicting the classification of the current example.

The training examples are used for
- providing a library of sample cases
- re-scaling the similarity function to maximize performance
Nearest Neighbors

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

k nearest neighbors of an example x are the data points that have the k smallest distances to x
Prediction

The predicted class is determined from the nearest neighbor list

- **classification**
 - take the majority vote of class labels among the k-nearest neighbors
 \[
 \hat{y} = \max_c \sum_{i=1}^k \begin{cases}
 1 & \text{if } y_i = c \\
 0 & \text{if } y_i \neq c
 \end{cases}
 = \max_c \sum_{i=1}^k 1(y_i = c)
 \]

- can be easily be extended to **regression**
 - predict the average value of the class value of the k-nearest neighbors
 \[
 \hat{y} = \frac{1}{k} \sum_{i=1}^k y_i
 \]
Weighted Prediction

- Often prediction can be improved if the influence of each neighbor is weighted

\[\hat{y} = \frac{\sum_{i=1}^{k} w_i y_i}{\sum_{i=1}^{k} w_i} \]

- Weights typically depend on distance, e.g.

\[w_i = \frac{1}{d(x_i, x)^2} \]

- Note:
 - with weighted distances, we could use all examples for classifications (→ Inverse Distance Weighting)
Nearest-Neighbor Classifiers

- Require three things
 - The set of stored examples
 - Distance Metric to compute distance between examples
 - The value of k, the number of nearest neighbors to retrieve

- To classify an unknown example:
 - Compute distance to other training examples
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown example (e.g., by taking majority vote)
Voronoi Diagram

- shows the regions of points that are closest to a given set of points

- boundaries of these regions correspond to potential decision boundaries of 1NN classifier
Choosing the value of k

1-NN

5-NN

20-NN
Choosing the value of k

- **If k is too small**
 - sensitive to noise in the data (misclassified examples)

- **If k is too large**
 - neighborhood may include points from other classes
 - limiting case: $k \geq |D|$
 - all examples are considered
 - largest class is predicted

- **good values can be found**
 - e.g., by evaluating various values with cross-validation on the training data
Distance Functions

- Computes the distance between two examples
 - so that we can find the “nearest neighbor” to a given example
- General Idea:
 - reduce the distance \(d(x_1, x_2) \) of two examples to the distances \(d_A(v_1, v_2) \) between two values for attribute \(A \)
- Popular choices
 - Euclidean Distance: \(d(x_1, x_2) = \sqrt{\sum_A d_A(v_{1,A}, v_{2,A})^2} \)
 - straight-line between two points
 - Manhattan or City-block Distance: \(d(x_1, x_2) = \sum_A d_A(v_{1,A}, v_{2,A}) \)
 - sum of axis-parallel line segments
Distance Functions for Numerical Attributes

- Numerical Attributes:
 - distance between two attribute values
 \[d_A(v_1, v_2) = |v_1 - v_2| \]

- Normalization:
 - Different attributes are measured on different scales
 \[\hat{v}_i = \frac{v_i - \min v_j}{\max v_j - \min v_j} \]
 - Note:
 - This normalization assumes a (roughly) uniform distribution of attribute values
 - For other distributions, other normalizations might be preferable
 - e.g.: logarithmic for salaries?
Distance Functions for Symbolic Attributes

- **0/1 distance**

\[d_A(v_1, v_2) = \begin{cases} 0 & \text{if } v_1 = v_2 \\ 1 & \text{if } v_1 \neq v_2 \end{cases} \]

- **Value Difference Metric (VDM)** (Stanfill & Waltz 1986)
 - two values are similar if they have approximately the same distribution over all classes (similar frequencies in all classes)
 - sum over all classes the difference of the percentage of examples with value \(v_1 \) in this class and examples with value \(v_2 \) in this class

\[
d_A(v_1, v_2) = \sum_c \left| \frac{n_{1,c}}{n_1} - \frac{n_{2,c}}{n_2} \right|^k
\]

- used in PEBLS with \(k = 1 \)
 (Parallel Exemplar-Based Learning System; Cost & Salzberg, 1993)
VDM Example

$$d(\text{Refund}=\text{Yes}, \text{Refund}=\text{No})$$

$$= |0/3 - 3/7| + |3/3 - 4/7| = 6/7$$

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Refund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
</tr>
<tr>
<td>No</td>
<td>4</td>
</tr>
</tbody>
</table>
VDM Example

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Marital Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>No</td>
<td>2</td>
</tr>
</tbody>
</table>

Distance between values:

\[
d(\text{Single}, \text{Married}) = | \frac{2}{4} - \frac{0}{4} | + | \frac{2}{4} - \frac{4}{4} | = 1
\]

\[
d(\text{Single}, \text{Divorced}) = | \frac{2}{4} - \frac{1}{2} | + | \frac{2}{4} - \frac{1}{2} | = 0
\]

\[
d(\text{Married}, \text{Divorced}) = | \frac{0}{4} - \frac{1}{2} | + | \frac{4}{4} - \frac{1}{2} | = 1
\]
Other Distance Functions

- Other distances are possible
 - hierarchical attributes
 - distance of the values in the hierarchy
 - e.g., length of shortest path from v_1 to v_2

$$d(\text{Canada}, \text{USA}) = 2, \ d(\text{Canada}, \text{Japan}) = 4$$
Other Distance Functions

- Other distances are possible
 - hierarchical attributes
 - distance of the values in the hierarchy
 - e.g., length of shortest path from v_1 to v_2
 - string values
 - edit distance
- in general
 - distances are domain-dependent
 - can be chosen appropriately

Distances for Missing Values

- not all attribute values may be specified for an example
- Common policy:
 - assume missing values to be maximally distant
Feature Weighting

- Not all dimensions are equally important
 - comparisons on some dimensions might even be completely irrelevant for the prediction task
 - straight-forward distance functions give equal weight to all dimensions
- Idea:
 - use a weight for each attribute to denote its importance
 - e.g., Weighted Euclidean Distance:
 \[d(x_1, x_2) = \sqrt{\sum_A w_A \cdot d_A(v_{1,A}, v_{2,A})^2} \]
 - weights \(w_A \) can be set by user or determined automatically
- Survey of feature weighting algorithms:

 Dietrich Wettschereck, David W. Aha, Takao Mohri:
RELIEF
(Kira & Rendell, ICML-92)

Basic idea:

In a local neighborhood around an example \(x \) a good attribute \(A \) should

- allow to **discriminate** \(x \) from all examples of different classes (the set of **misses**)
 - therefore the probability that the attribute has a different value for \(x \) and a miss \(m \) should be high

- have the **same value** for all examples of the same class as \(x \) (the set of **hits**)
 - therefore the probability that the attribute has a different value for \(x \) and a hit \(h \) should be low

\[w_A = Pr(v_x \neq v_m) - Pr(v_x \neq v_h) \]

where \(v_x \) is the value of attribute \(A \) in example \(x \)

- this probability can be estimated via the average distance
RELIEF
(Kira & Rendell, ICML-92)

1. set all attribute weights $w_A = 0.0$

2. for $i = 1$ to r (← user-settable parameter)
 - select a random example x
 - find
 - h: nearest neighbor of same class (*near hit*)
 - m: nearest neighbor of different class (*near miss*)
 - for each attribute A
 - \[w_A \leftarrow w_A + \frac{1}{r} \left(d_A(m, x) - d_A(h, x) \right) \]
 where $d_A(x, y)$ is the distance in attribute A between examples x and y (normalized to [0,1]-range).

Note: when used for feature weighting, all $w_A < 0.0$ are set to 0 in the end.
Learning Prototypes

- Only those instances involved in a decision need to be stored
 - Noisy instances should be filtered out
- Idea:
 - only use prototypical examples
Learning Prototypes: IB-algorithms

- Case Study for prototype selection

- **IB1**: Store all examples
 - high noise tolerance
 - high memory demands

- **IB2**: Store new example only if misclassified by stored examples
 - low noise tolerance
 - low memory demands

- **IB3**: like IB2, but
 - maintain a counter for the number of times the example participated in correct and incorrect classifications
 - use a significant test for filtering noisy examples
 - improved noise tolerance
 - low memory demands
Instance Weighting

- Selecting instances is a special case of instance weighting
- Idea:
 - all instances are assigned weights
 - instances with higher weights are always distant
 - hence have a low impact on classification
 - instance weight $w_x = 0$ ignores this instance x

- Similarity function used in PEBLS (Cost & Salzberg, 1993)

$$d(x_1, x_2) = \frac{1}{w_{x_1} \cdot w_{x_2}} \cdot \sum_A d_A(v_1, v_2)^k$$

where $w_x = \frac{\text{Number of times } x \text{ has correctly predicted the class}}{\text{Number of times } x \text{ has been used for prediction}}$

- $w_x \approx 1$ if instance x predicts well
- $w_x < 1$ if instance x does not predict well
Efficiency of NN algorithms

- very efficient in training
 - only store the training data
- not so efficient in testing
 - computation of distance measure to every training example
 - much more expensive than, e.g., rule learning

- Note that kNN and 1NN are equal in terms of efficiency
 - retrieving the k nearest neighbors is (almost) no more expensive than
 retrieving a single nearest neighbor
 - k nearest neighbors can be maintained in a queue
Finding nearest neighbors efficiently

- Simplest way of finding nearest neighbour:
 - linear scan of the data
 - classification takes time proportional to the product of the number of instances in training and test sets

- Nearest-neighbor search can be done more efficiently using appropriate data structures
 - kD-trees
 - ball trees
kD-Trees

- common setting (others possible)
 - each level corresponds to one of the attributes
 - order of attributes can be arbitrary, fixed, and cyclic
 - each level splits according to this attribute
 - ideally use the median value (results in balanced trees)
 - often simply use the value of the next example
Building kD-trees incrementally

- Big advantage of instance-based learning: classifier can be updated incrementally
 - Just add new training instance after it arrives!
- Can we do the same with kD-trees?

- Heuristic strategy:
 - Find leaf node containing new instance
 - If leaf is empty
 - place instance into leaf
 - Else
 - split leaf according to the next dimension
 - Alternatively: split according to the longest dimension
 - idea: preserve squareness

- Tree should be re-built occasionally
 - e.g., if depth grows to twice the optimum depth
Using kD-trees: example

- The effect of a kD-tree is to partition the (multi-dimensional) sample space according to the underlying data distribution:
 - finer partitioning in regions with high density
 - coarser partitioning in regions with low density
- For a given query point:
 - descending the tree to find the data points lying in the cell that contains the query point
 - examine surrounding cells if they overlap the ball centered at the query point and the closest data point so far
 - recursively back up one level and check distance to the split point
 - if overlap also search other branch
 → only a few cells have to be searched
Using kD-trees: example

- Assume we have example \([1,5]\)
 - Unweighted Euclidean distance
 \[d(e_1, e_2) = \sqrt{\sum \Delta d_A(e_1, e_2)^2} \]
- sort the example down the tree:
 - ends in leaf \([4,7]\)
- compute distance to example in the leaf
 \[d([1,5], [4,7]) = \sqrt{(1-4)^2 + (5-7)^2} = \sqrt{13} \]
- now we have to look into rectangles that may contain a nearer example
 - remember the difference to the closest example \(d_{\text{min}} = \sqrt{13}\)
Using kD-trees: example

- go up one level (to example [5,4])
- compute distance to the closest point on this split (difference only on Y)
 \[d([1,5],[*,4]) = \sqrt{0^2 + (5 - 4)^2} = 1 \]
- if the difference is smaller than the current best difference
 \[d([1,5],[*,4]) = 1 < \sqrt{13} = d_{\text{min}} \]
- then we could have a closer example in area Y < 4.
 - go down the other branch
 - and repeat recursively
Using kD-trees: example

- go down to leaf $[2,3]$
- compute distance to example in this leaf

 \[d([1,5], [2,3]) = \sqrt{(1-2)^2 + (5-3)^2} = \sqrt{5} \]
- if the difference is smaller than the current best difference

 \[d([1,5], [2,3]) = \sqrt{5} < \sqrt{13} = d_{\min} \]
- then the example in the leaf is the new nearest neighbor and

 \[d_{\min} = \sqrt{5} < \sqrt{13} \]
- this is recursively repeated until we have processed the root node
 - no more distances have to be computed
Ball trees

- Problem in kD-trees: corners
- Observation:
 - There is no need to make sure that regions don’t overlap
 → We can use balls (hyperspheres) instead of hyperrectangles
 - A ball tree organizes the data into a tree of k-dimensional hyperspheres
 - Normally allows for a better fit to the data and thus more efficient search
Nearest Hyper-Rectangle

- Nearest-Neighbor approaches can be extended to compute the distance to the nearest hyper-rectangle
 - a hyper-rectangle corresponds to a rule
 - conditions are intervals along each dimension

- To do so, we need to adapt the distance measure
 - distance of a point to a rectangle instead of point-to-point distance
Rectangle-to-Point Distance

\[d(x, R) = d_A(x, R) + d_B(x, R) \]
Rectangle-to-Point Attribute Distance

- **numeric Attributes**
 - distance of the point to the closest edge of the rectangle along this attribute (i.e., distance to the upper/lower bound of the interval)

 \[
 d_A(v, R) = \begin{cases}
 0 & \text{if } v_{min, A_R} \leq v \leq v_{max, A_R} \\
 v - v_{max, A_R} & \text{if } v > v_{max, A_R} \\
 v_{min, A_R} - v & \text{if } v < v_{min, A_R}
 \end{cases}
 \]

 if rule \(R \) uses \(v_{min, A_R} \leq A \leq v_{max, A_R} \) as condition for attribute \(A \)

- **symbolic attributes**
 - 0/1 distance
 \[
 d_A(v, R) = \begin{cases}
 0 & \text{if } v = v_{A_R} \\
 1 & \text{if } v \neq v_{A_R}
 \end{cases}
 \]

 if rule \(R \) uses \(A = v_{A_R} \) as condition for attribute \(A \)

One can also adapt other distances. RISE uses a version of the VDM.
1. randomly choose \(r \) seed examples
 - convert them into rules
2. for each example \(x \)
 - choose rule \(R_{min} = \arg\min_{R} d(x, R) \)
 - if \(x \) is classified correctly by \(R_{min} \)
 - enlarge the condition of \(R_{min} \) so that \(x \) is covered
 - for each numeric attribute enlarge the interval if necessary
 - for each symbolic attribute delete the condition if necessary
 - else if \(x \) is classified incorrectly by \(R_{min} \)
 - add example \(x \) as a new rule

NEAR uses both instance and feature weighting

\[
d(x, R) = w_x \sqrt{\sum_A w_A^2 d_A(x, R)^2}
\]
Instance and Feature Weighting in NEAR

Instance Weighting as in PEBLS

Feature Weights are computed incrementally

- if an example is **incorrectly** classified
 - the weights of all matching attributes are increased by a fixed percentage (20%)
 - this has the effect of moving the example farther away along these dimensions
 - the weights of all attributes that do not match are decreased by a fixed percentage (20%)
- if an example is **correctly** classified
 - do the opposite (decrease matching and increase non-matching weights analogously)
Second Chance Heuristic

An improved version used a **Second Chance Heuristic**

- if the nearest rule did not classify correctly, try the second one
 - if this one matches → expand it to cover the example
 - if not → add the example as a new rule

- this can lead to the generation of nested rules
 - i.e., rectangles inside of other rectangles
 - at classification time, use the smallest matching rectangle
 - but this did not work well (overfitting?)
 - such nested rules may be interpreted as rules with exceptions
RISE (Domingos, 1996)

(Rule Induction from a Set of Exemplars)

1. turn each example into a rule resulting in a theory \(T \)
2. repeat
 - for each rule \(R \) in \(T \)
 i. choose uncovered example \(x_{\min} = \arg \min_x d(x, R) \)
 ii. \(R' = \text{minimalGeneralisation}(R, x_{\min}) \)
 iii. replace \(R \) with \(R' \) if this does not decrease the accuracy of \(T \)
 iv. delete \(R' \) if it is already part of \(T \) (duplicate rule)
3. until no further increase in accuracy

- RISE uses the simple distance function

\[
d(x, R) = \sum_A d_A(x, R)^k
\]
RISE (Domingos, 1996)

- Classification of an example:
 - use the rule that is closest to the example
 - if multiple rules have the same distance, use the one with the highest Laplace-corrected precision

- Leave-one-out estimation of accuracy of a theory:
 - For classifying an example, the rule that encodes it is ignored
 - but only if it has not been generalized yet
 - can be computed efficiently if each examples remembers the distance to the rule by which it is classified
 - if a rule is changed, go once through all examples and see if the new rule classifies any examples that were classified by some other rule before
 - count the improvements (+1) or mistakes (-1) only for those examples, and see whether their sum is > 0 or < 0.
Differences NEAR and RISE

- **NEAR**
 - focuses on examples
 - incremental training
 - instance weighted and feature-weighted Euclidean distance
 - tie breaking using the smallest rule

- **RISE**
 - focuses on rules
 - batch training
 - straight-forward Manhattan distance
 - tie breaking with Laplace heuristic
Discussion

- Nearest Neighbor methods are often very accurate
 - Assumes all attributes are equally important
 - Remedy: attribute selection or weights
 - Possible remedies against noisy instances
 - Take a majority vote over the k nearest neighbors
 - Removing noisy instances from dataset (difficult!)
 - Statisticians have used k-NN since early 1950s
 - If $n \to \infty$ and $k/n \to 0$, error approaches minimum
 - can model arbitrary decision boundaries
- ...but somewhat inefficient (at classification time)
 - straight-forward application maybe too slow
 - kD-trees become inefficient when number of attributes is too large (approximately > 10)
 - Ball trees work well in higher-dimensional spaces
- several similarities with rule learning