Machine Learning: Symbolische Ansätze

Evaluation and Cost-Sensitive Learning

- Evaluation
 - Hold-out Estimates
 - Cross-validation
- Significance Testing
 - Sign test

- ROC Analysis
 - Cost-Sensitive Evaluation
 - ROC space
 - ROC convex hull
 - Rankers and Classifiers
 - ROC curves
 - AUC
- Cost-Sensitive Learning
Evaluation of Learned Models

- Validation through experts
 - a domain expert evaluates the plausibility of a learned model
 + but often the only option (e.g., clustering)
 - subjective, time-intensive, costly

- Validation on data
 - evaluate the accuracy of the model on a separate dataset drawn from the same distribution as the training data
 - labeled data are scarce, could be better used for training
 + fast and simple, off-line, no domain knowledge needed, methods for re-using training data exist (e.g., cross-validation)

- On-line Validation
 - test the learned model in a fielded application
 + gives the best estimate for the overall utility
 - bad models may be costly
Confusion Matrix
(Concept Learning)

<table>
<thead>
<tr>
<th>Classified as +</th>
<th>Classified as -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is +</td>
<td>false negatives (fn)</td>
</tr>
<tr>
<td>true positives (tp)</td>
<td></td>
</tr>
<tr>
<td>Is −</td>
<td>true negatives (tn)</td>
</tr>
<tr>
<td>false positives (fp)</td>
<td></td>
</tr>
<tr>
<td>tp + fp</td>
<td>fn + tn</td>
</tr>
</tbody>
</table>

- the confusion matrix summarizes all important information
 - how often is class i confused with class j
- most evaluation measures can be computed from the confusion matrix
 - accuracy
 - recall/precision, sensitivity/specificity
 - …
Basic Evaluation Measures

- **true positive rate:** \[tpr = \frac{tp}{tp + fn} \]
 - percentage of correctly classified positive examples
- **false positive rate:** \[fpr = \frac{fp}{fp + tn} \]
 - percentage of negative examples incorrectly classified as positive
- **false negative rate:** \[fnr = \frac{fn}{tp + fn} = 1 - tpr \]
 - percentage of positive examples incorrectly classified as negative
- **true negative rate:** \[tnr = \frac{tn}{fp + tn} = 1 - fpr \]
 - percentage of correctly classified negative examples
- **accuracy:** \[acc = \frac{tp + tn}{P + N} \]
 - percentage of correctly classified examples
 - can be written in terms of \(tpr \) and \(fpr \): \[acc = \frac{P}{P + N} \cdot tpr + \frac{N}{P + N} \cdot (1 - fpr) \]
- **error:** \[err = \frac{fp + fn}{P + N} = 1 - acc = \frac{P}{P + N} \cdot (1 - tpr) + \frac{N}{P + N} \cdot fpr \]
 - percentage of incorrectly classified examples
Confusion Matrix
(Multi-Class Problems)

- for multi-class problems, the confusion matrix has many more entries:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$n_{A,A}$</td>
<td>$n_{B,A}$</td>
<td>$n_{C,A}$</td>
<td>$n_{D,A}$</td>
</tr>
<tr>
<td>B</td>
<td>$n_{A,B}$</td>
<td>$n_{B,B}$</td>
<td>$n_{C,B}$</td>
<td>$n_{D,B}$</td>
</tr>
<tr>
<td>C</td>
<td>$n_{A,C}$</td>
<td>$n_{B,C}$</td>
<td>$n_{C,C}$</td>
<td>$n_{D,C}$</td>
</tr>
<tr>
<td>D</td>
<td>$n_{A,D}$</td>
<td>$n_{B,D}$</td>
<td>$n_{C,D}$</td>
<td>$n_{D,D}$</td>
</tr>
<tr>
<td></td>
<td>n_A</td>
<td>n_B</td>
<td>n_C</td>
<td>n_D</td>
</tr>
</tbody>
</table>

- accuracy is defined analogously to the two-class case:

$$\text{accuracy} = \frac{n_{A,A} + n_{B,B} + n_{C,C} + n_{D,D}}{|E|}$$
Out-of-Sample Testing

- Performance cannot be measured on training data
 - overfitting!

- Reserve a portion of the available data for testing
 - typical scenario
 - 2/3 of data for training
 - 1/3 of data for testing (evaluation)
 - a classifier is trained on the training data
 - and tested on the test data
 - e.g., confusion matrix is computed for test data set

- Problems:
 - waste of data
 - labelling may be expensive
 - high variance
 - often: repeat 10 times or → cross-validation
Typical Learning Curves

Quelle: Winkler 2007, nach Mitchell 1997,
Cross-Validation

- Algorithm:
 - split dataset into x (usually 10) partitions
 - for every partition X
 - use other $x-1$ partitions for learning and partition X for testing
 - average the results

- Example: 4-fold cross-validation
Leave-One-Out Cross-Validation

- \(n \)-fold cross-validation
 - where \(n \) is the number of examples:
 - use \(n-1 \) examples for training
 - 1 example for testing
 - repeat for each example

- Properties:
 - makes best use of data
 - only one example not used for testing
 - no influence of random sampling
 - training/test splits are determined deterministically
 - typically very expensive
 - but, e.g., not for k-NN (Why?)
 - bias
 - example see exercises
Experimental Evaluation of Algorithms

- Typical experimental setup (in % Accuracy):
 - evaluate n algorithms on m datasets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Grading</th>
<th>Select</th>
<th>Stacking</th>
<th>Voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>audiology</td>
<td>83.36</td>
<td>77.61</td>
<td>76.02</td>
<td>84.56</td>
</tr>
<tr>
<td>autos</td>
<td>80.93</td>
<td>80.83</td>
<td>82.20</td>
<td>83.51</td>
</tr>
<tr>
<td>balance-scale</td>
<td>89.89</td>
<td>91.54</td>
<td>89.50</td>
<td>86.16</td>
</tr>
<tr>
<td>breast-cancer</td>
<td>73.99</td>
<td>71.64</td>
<td>72.06</td>
<td>74.86</td>
</tr>
<tr>
<td>breast-w</td>
<td>96.70</td>
<td>97.47</td>
<td>97.41</td>
<td>96.82</td>
</tr>
<tr>
<td>colic</td>
<td>84.38</td>
<td>84.48</td>
<td>84.78</td>
<td>85.08</td>
</tr>
<tr>
<td>credit-a</td>
<td>86.01</td>
<td>84.87</td>
<td>86.09</td>
<td>86.04</td>
</tr>
<tr>
<td>credit-g</td>
<td>75.64</td>
<td>75.48</td>
<td>76.17</td>
<td>75.23</td>
</tr>
<tr>
<td>diabetes</td>
<td>75.53</td>
<td>76.86</td>
<td>76.32</td>
<td>76.25</td>
</tr>
<tr>
<td>glass</td>
<td>74.35</td>
<td>74.44</td>
<td>76.45</td>
<td>75.70</td>
</tr>
<tr>
<td>heart-c</td>
<td>82.74</td>
<td>84.09</td>
<td>84.26</td>
<td>81.55</td>
</tr>
<tr>
<td>heart-h</td>
<td>83.64</td>
<td>85.78</td>
<td>85.14</td>
<td>83.16</td>
</tr>
<tr>
<td>heart-statlog</td>
<td>84.22</td>
<td>83.56</td>
<td>84.04</td>
<td>83.30</td>
</tr>
<tr>
<td>hepatitis</td>
<td>83.42</td>
<td>83.03</td>
<td>83.29</td>
<td>82.77</td>
</tr>
<tr>
<td>ionosphere</td>
<td>91.85</td>
<td>91.34</td>
<td>92.82</td>
<td>92.42</td>
</tr>
<tr>
<td>iris</td>
<td>95.13</td>
<td>95.20</td>
<td>94.93</td>
<td>94.93</td>
</tr>
<tr>
<td>labor</td>
<td>93.68</td>
<td>90.35</td>
<td>91.58</td>
<td>93.86</td>
</tr>
<tr>
<td>lymph</td>
<td>83.45</td>
<td>81.69</td>
<td>80.20</td>
<td>84.05</td>
</tr>
<tr>
<td>primary-t.</td>
<td>49.47</td>
<td>49.23</td>
<td>42.63</td>
<td>46.02</td>
</tr>
<tr>
<td>segment</td>
<td>98.03</td>
<td>97.05</td>
<td>98.08</td>
<td>98.14</td>
</tr>
<tr>
<td>sonar</td>
<td>85.05</td>
<td>85.05</td>
<td>85.58</td>
<td>84.23</td>
</tr>
<tr>
<td>soybean</td>
<td>93.91</td>
<td>93.69</td>
<td>92.90</td>
<td>93.84</td>
</tr>
<tr>
<td>vehicle</td>
<td>74.46</td>
<td>73.90</td>
<td>79.89</td>
<td>72.91</td>
</tr>
<tr>
<td>vote</td>
<td>95.93</td>
<td>95.95</td>
<td>96.32</td>
<td>95.33</td>
</tr>
<tr>
<td>vowel</td>
<td>98.74</td>
<td>99.06</td>
<td>99.00</td>
<td>98.80</td>
</tr>
<tr>
<td>zoo</td>
<td>96.44</td>
<td>95.05</td>
<td>93.96</td>
<td>97.23</td>
</tr>
</tbody>
</table>

- Can we conclude that algorithm X is better than Y? How?
Summarizing Experimental Results

- Averaging the performance
 - May be deceptive:
 - algorithm A is 0.1% better on 19 datasets with thousands of examples
 - algorithm B is 2% better on 1 dataset with 50 examples
 - A is better, but B has the higher average accuracy
 - In our example: “Grading” is best on average

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Grading</th>
<th>Select</th>
<th>Stacking</th>
<th>Voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg</td>
<td>85.04</td>
<td>84.59</td>
<td>84.68</td>
<td>84.88</td>
</tr>
</tbody>
</table>

- Counting wins/ties/losses
 - now “Stacking” is best
 - Results are “inconsistent”:
 - Grading > Select > Voting > Grading
 - How many “wins” are needed to conclude that one method is better than the other?

<table>
<thead>
<tr>
<th></th>
<th>Grading</th>
<th>Select</th>
<th>Stacking</th>
<th>Voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading</td>
<td>—</td>
<td>15/1/10</td>
<td>11/0/15</td>
<td>12/0/14</td>
</tr>
<tr>
<td>Select</td>
<td>10/1/15</td>
<td>—</td>
<td>10/0/16</td>
<td>14/0/12</td>
</tr>
<tr>
<td>Stacking</td>
<td>15/0/11</td>
<td>16/0/10</td>
<td>—</td>
<td>15/1/10</td>
</tr>
<tr>
<td>Voting</td>
<td>14/0/12</td>
<td>12/0/14</td>
<td>10/1/15</td>
<td>—</td>
</tr>
</tbody>
</table>
Sign Test

- **Given:**
 - A coin with two sides (heads and tails)
- **Question:**
 - How often do we need heads in order to be sure that the coin is not fair?
- **Null Hypothesis:**
 - The coin is fair ($P(\text{heads}) = P(\text{tails}) = 0.5$)
 - We want to refute that!
- **Experiment:**
 - Throw up the coin N times
- **Result:**
 - i heads, $N - i$ tails
 - What is the probability of observing i under the null hypothesis?
Sign Test

- **Given:**
 - A coin with two sides (heads and tails)

- **Question:**
 - How often do we need heads in order to be sure that the coin is not fair?

- **Null Hypothesis:**
 - The coin is fair ($P(\text{heads}) = P(\text{tails}) = 0.5$)
 - We want to refute that!

- **Experiment:**
 - Throw up the coin N times

- **Result:**
 - i heads, $N-i$ tails
 - What is the probability of observing i under the null hypothesis?

Two Learning Algorithms (A and B)

On how many datasets must A be better than B to ensure that A is a better algorithm than B?

Both Algorithms are equal.

Run both algorithms on N datasets

i wins for A on $N-i$ wins for B
Sign Test: Summary

We have a binomial distribution with \(p = \frac{1}{2} \)

- the probability of having \(i \) successes is \(P(i) = \binom{N}{i} p^i (1-p)^{N-i} \)

- the probability of having at most \(k \) successes is (one-tailed test)

\[
P(i \leq k) = \sum_{i=1}^{k} \binom{N}{i} \frac{1}{2^i} \cdot \frac{1}{2^{N-i}} = \frac{1}{2^N} \sum_{i=1}^{k} \binom{N}{i}
\]

- the probability of having at most \(k \) successes or at least \(N-k \) successes is (two-tailed test)

\[
P(i \leq k \lor i \geq N-k) = \frac{1}{2^N} \sum_{i=1}^{k} \binom{N}{i} + \frac{1}{2^N} \sum_{i=1}^{k} \binom{N}{N-i} = \frac{1}{2^{N-1}} \sum_{i=1}^{k} \binom{N}{i}
\]

- for large \(N \), this can be approximated with a normal distribution

Illustrations taken from http://www.mathsrevision.net/
Table
Sign Test

- Example:
 - 20 datasets
 - Alg. A vs. B
 - A 4 wins
 - B 14 wins
 - 2 ties (not counted)
 - we can say with a certainty of 95% that B is better than A
 - but not with 99% certainty!

- Online: http://www.fon.hum.uva.nl/Service/Statistics/Sign_Test.html
Properties

- Sign test is a very simple test
 - does not make any assumption about the distribution

- Sign test is very conservative
 - If it detects a significant difference, you can be sure it is
 - If it does not detect a significant difference, a different test that models the distribution of the data may still yield significance

- Alternative tests:
 - two-tailed t-test:
 - incorporates magnitude of the differences in each experiment
 - assumes that differences form a normal distribution

- Rule of thumb:
 - Sign test answers the question “How often?”
 - t-test answers the question “How much?”
Problem of Multiple Comparisons

- **Problem:**
 - With 95% certainty we have
 - a probability of 5% that one algorithm appears to be better than the other
 - even if the null hypothesis holds!
 → if we make many pairwise comparisons the chance that a “significant” difference is observed increases rapidly

- **Solutions:**
 - Bonferroni adjustments:
 - **Basic idea:** tighten the significance thresholds depending on the number of comparisons
 - Too conservative
 - Friedman and Nemenyi tests
 - recommended procedure (based on average ranks)
 http://jmlr.csail.mit.edu/papers/v7/demsar06a.html
Cost-Sensitive Evaluation

- Predicting class \(i \) instead of the correct \(j \) is associated with a cost factor \(C(i \mid j) \)
 - 0/1-loss (accuracy):
 \[
 C(i \mid j) = \begin{cases}
 0 & \text{if } i = j \\
 1 & \text{if } i \neq j
 \end{cases}
 \]
 - general case for concept learning:

<table>
<thead>
<tr>
<th></th>
<th>Classified as +</th>
<th>Classified as −</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is +</td>
<td>(C(+</td>
<td>+))</td>
</tr>
<tr>
<td>Is −</td>
<td>(C(+</td>
<td>−))</td>
</tr>
</tbody>
</table>
Examples

- **Loan Applications**
 - rejecting an applicant who will not pay back → minimal costs
 - accepting an applicant who will pay back → gain
 - accepting an applicant who will not pay back → big loss
 - rejecting an applicant who would pay back → loss

- **Spam-Mail Filtering**
 - rejecting good E-mails (ham) is much worse than accepting a few spam mails

- **Medical Diagnosis**
 - failing to recognize a disease is often much worse than to treat a healthy patient for this disease
Cost-Sensitive Evaluation

- Expected Cost (Loss):
 \[L = tpr \cdot C(+|+) + fpr \cdot C(+|-) + fnr \cdot C(-|+) + tnr \cdot C(-|-) \]

- If there are no costs for correct classification:
 \[L = fpr \cdot C(+|-) + fnr \cdot C(-|+) = fpr \cdot C(+|-) + (1 - tpr) \cdot C(-|+) \]

 - note the general form:
 - this is essentially the relative cost metric we know from rule learning

- Distribution of positive and negative examples may be viewed as a cost parameter
 - error is a special case
 \[C(+|-) = \frac{N}{P+N}, \quad C(-|+) = \frac{P}{P+N} \]
 - we abbreviate the costs with \(c_- = C(+|-), \quad c_+ = C(-|+) \)
ROC Analysis

- Receiver Operating Characteristic
 - origins in signal theory to show tradeoff between hit rate and false alarm rate over noisy channel

- Basic Objective:
 - Determine the best classifier for varying cost models
 - accuracy is only one possibility, where true positives and false positives receive equal weight

- Method:
 - Visualization in ROC space
 - each classifier is characterized by its measured fpr and tpr
 - ROC space is like coverage space (→ rule learning) except that axes are normalized
 - x-axis: false positive rate fpr
 - y-axis: true positive rate tpr
Example ROC plot

ROC plot produced by ROCon (http://www.cs.bris.ac.uk/Research/MachineLearning/rocon/)
ROC spaces vs. Coverage Spaces

- ROC spaces are normalized coverage spaces
 - Coverage spaces may have different shapes of the rectangular area \((0,P) \times (0,N)\)
 - ROC spaces are normalized to a square \((0,1) \times (0,1)\)

<table>
<thead>
<tr>
<th>property</th>
<th>ROC space</th>
<th>coverage space</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-axis</td>
<td>(\text{FPR} = \frac{n}{N})</td>
<td>(n)</td>
</tr>
<tr>
<td>y-axis</td>
<td>(\text{TPR} = \frac{p}{P})</td>
<td>(p)</td>
</tr>
<tr>
<td>empty theory (R_0)</td>
<td>((0,0))</td>
<td>((0,0))</td>
</tr>
<tr>
<td>correct theory (R)</td>
<td>((0,1))</td>
<td>((0,P))</td>
</tr>
<tr>
<td>universal theory (\tilde{R})</td>
<td>((1,1))</td>
<td>((N,P))</td>
</tr>
<tr>
<td>resolution</td>
<td>((\frac{1}{N}, \frac{1}{P}))</td>
<td>((1,1))</td>
</tr>
<tr>
<td>slope of diagonal</td>
<td>1</td>
<td>(\frac{P}{N})</td>
</tr>
<tr>
<td>slope of (p = n) line</td>
<td>(\frac{N}{P})</td>
<td>1</td>
</tr>
</tbody>
</table>
Costs and Class Distributions

- assume no costs for correct classification and a cost ratio
 \[r = c_-/c_+ \] for incorrect classifications
 - this means that false positives are \(r \) times as expensive as false negatives
- this situation can be simulated by increasing the proportion of negative examples by a factor of \(r \)
 - e.g. by replacing each negative example with \(r \) identical copies of the same example
 - each mistake on negative examples is then counted with \(r \), a mistake on positive examples is still counted with 1
- computing the error in the new set corresponds to computing a cost-sensitive evaluation in the original dataset

➔ the same trick can be used for cost-sensitive learning!
Example

- Coverage space with equally distributed positive and negative examples ($P = N$)

 - assume a false positive is twice as bad as a false negative (i.e., $c_- = 2c_+$)
 - this situation can be modeled by counting each covered negative example twice
Example

- Doubling the number of negative examples
 - changes the shape of the coverage space and the location of the points
Example

- Mapping back to ROC space
 - yields the same (relative) location of the original points

- but the angle of the isometrics has changed as well
- accuracy in the coverage space with doubled negative examples corresponds to a line with slope \(r = 2 \) in ROC space
Important Lessons

- Class Distributions and Cost Distributions are interchangable
 - cost-sensitive evaluation (and learning) can be performed by changing
 the class distribution (e.g., duplication of examples)
 - Therefore there is always a coverage space that corresponds to
 the current cost distribution
 - in this coverage space, the cost ratio $r = 1$, i.e., positive and negative
 examples are equally important
- The ROC space results from normalizing this rectangular
 coverage space to a square
 - cost isometrics in the ROC space are accuracy isometrics in the
 corresponding coverage space
- The location of a classifier in ROC space is invariant to changes
 in the class distribution
 - but the slope of the isometrics changes when a different cost model is used
ROC isometrics

- Iso-cost lines connects ROC points with the same costs c
 - $c = c_+ \cdot (1 - tpr) + c_- \cdot fpr$
 - $tpr = \frac{c_-}{c_+} \cdot fpr + \left(\frac{c}{c_+} - 1 \right)$

- Cost isometrics are parallel ascending lines with slope $r = \frac{c_-}{c_+}$
 - e.g., error/accuracy slope = N/P

Slide adapted from P. Flach, ICML-04 Tutorial on ROC
Selecting the optimal classifier

For uniform class distribution \((r = 1) \), C4.5 is optimal.

Classifiers in ROC space

TP Rate

FP Rate

SVM

C4.5

NB

Ripper

CN2
Selecting the optimal classifier

With four times as many positives as negatives ($r = 1/4$), SVM is optimal.

Slide adapted from P. Flach, ICML-04 Tutorial on ROC
Selecting the optimal classifier

With four times as many negatives as positives ($r = 4$), CN2 is optimal

Slide adapted from P. Flach, ICML-04 Tutorial on ROC
Selecting the optimal classifier

- With less than 9% positives, predicting always negative is optimal
- With less than 11% negatives, predicting always positive is optimal
The ROC convex hull

Classifiers on the convex hull minimize costs for some cost model.

Any performance on a line segment connecting two ROC points can be achieved by interpolating between the classifiers.

Classifiers below the convex hull are always suboptimal.
Interpolating Classifiers

- Given two learning schemes we can reach any point on the convex hull!
 - TP and FP rates for scheme 1: \(tpr_1 \) and \(fpr_1 \)
 - TP and FP rates for scheme 2: \(tpr_2 \) and \(fpr_2 \)

- If scheme 1 is used to predict \(q \times 100\% \) of the cases and scheme 2 for the rest, then
 - TP rate for combined scheme: \(tpr_q = q \cdot tpr_1 + (1 - q) \cdot tpr_2 \)
 - FP rate for combined scheme: \(fpr_q = q \cdot fpr_1 + (1 - q) \cdot fpr_2 \)
Rankers and Classifiers

- A scoring classifier outputs scores $f(x,+)$ and $f(x,-)$ for each class
 - e.g. estimate probabilities $P(+ | x)$ and $P(- | x)$
 - scores don’t need to be normalised
- $f(x) = f(x,+)/f(x,-)$ can be used to rank instances from most to least likely positive
 - e.g. odds ratio $P(+ | x) / P(- | x)$
- Rankers can be turned into classifiers by setting a threshold on $f(x)$
- Example:
 - Naïve Bayes Classifier for two classes is actually a ranker
 - that has been turned into classifier by setting a probability threshold of 0.5 (corresponds to a odds ratio threshold of 1.0)
 - $P(+ | x) > 0.5 > 1 - P(+ | x) = P(- | x)$ means that class $+$ is more likely

Slide adapted from P. Flach, ICML-04 Tutorial on ROC
Drawing ROC Curves for Rankers

Performance of a ranker can be visualized via a ROC curve

- **Naïve method:**
 - consider all possible thresholds
 - only \(k+1\) thresholds between the \(k\) instances need to be considered
 - each threshold corresponds to a new classifier
 - for each classifier
 - construct confusion matrix
 - plot classifier at point \((\text{fpr}, \text{tpr})\) in ROC space

- **Practical method:**
 - rank test instances on decreasing score \(f(x)\)
 - start in \((0,0)\)
 - if the next instance in the ranking is +: move \(1/P\) up
 - if the next instance in the ranking is -: move \(1/N\) to the right
 - make diagonal move in case of ties

Note: It may be easier to draw in coverage space (1 up/right).
A sample ROC curve

Slide adapted from Witten/Frank, Data Mining
Properties of ROC Curves for Rankers

- The curve visualizes the quality of the ranker or probabilistic model on a test set, without committing to a classification threshold
 - aggregates over all possible thresholds

- The slope of the curve indicates class distribution in that segment of the ranking
 - diagonal segment → locally random behaviour

- Concavities indicate locally worse than random behaviour
 - convex hull corresponds to discretizing scores
 - can potentially do better: repairing concavities
Some example ROC curves

- Good separation between classes, convex curve
Some example ROC curves

- Reasonable separation, mostly convex
Some example ROC curves

- Fairly poor separation, mostly convex

Slide adapted from P. Flach, ICML-04 Tutorial on ROC
Some example ROC curves

- Poor separation, large and small concavities

Slide adapted from P. Flach, ICML-04 Tutorial on ROC
Some example ROC curves

- Random performance
Comparing Rankers with ROC Curves

If low fpr is more important, use Method A.

Inbetween, interpolate between A and B.

If high tpr is more important, use Method B.

Slide adapted from Witten/Frank, Data Mining.
AUC: The Area Under the ROC Curve

AUC

1 - AUC

True positives

0 20% 40% 60% 80% 100%

False positives

0 20% 40% 60% 80% 100%
The AUC metric

- The Area Under ROC Curve (AUC) assesses the ranking in terms of separation of the classes
 - all the positives before the negatives: AUC = 1
 - random ordering: AUC = 0.5
 - all the negatives before the positives: AUC = 0
- can be computed from the step-wise curve as:
 \[
 \text{AUC} = \frac{1}{P \cdot N} \sum_{i=1}^{N} (r_i - i) = \frac{1}{P \cdot N} \left(\sum_{i=1}^{N} r_i - \sum_{i=1}^{N} i \right) = \frac{S_- - N(N+1)/2}{P \cdot N}
 \]
 where \(r_i \) is the rank of a negative example and \(S_- = \sum_{i=1}^{N} r_i \)
- Equivalent to the Mann-Whitney-Wilcoxon sum of ranks test
 - estimates probability that randomly chosen positive example is ranked before randomly chosen negative example

Slide adapted from P. Flach, ICML-04 Tutorial on ROC
Multi-Class AUC

- ROC-curves and AUC are only defined for two-class problems (concept learning)
 - Extensions to multiple classes are still under investigation

Some Proposals for extensions:
- In the most general case, we want to calculate Volume Under ROC Surface (VUS)
 - number of dimensions proportional to number of entries in confusion matrix
- Projecting down to sets of two-dimensional curves and averaging
 - MAUC (Hand & Till, 2001): \[\text{MAUC} = \frac{2}{c \cdot (c - 1)} \sum_{i < j} \text{AUC}(i, j) \]
 - unweighted average of AUC of pairwise classification (1-vs-1)
 - (Provost & Domingos, 2001):
 - weighted average of 1-vs-all AUC for class \(c \) weighted by \(P(c) \)
Cost-sensitive learning

- Most learning schemes do not perform cost-sensitive learning
 - They generate the same classifier no matter what costs are assigned to the different classes
 - Example: standard rule or decision tree learner

- Simple methods for cost-sensitive learning:
 - If classifier is able to handle weighted instances
 - weighting of instances according to costs
 - covered examples are not counted with 1, but with their weight
 - For any classifier
 - resampling of instances according to costs
 - proportion of instances with higher weights/costs will be increased
 - If classifier returns a score f or probability P
 - varying the classification threshold
Costs and Example Weights

- The effort of duplicating examples can be saved if the learner can use example weights
 - positive examples get a weight of c_+
 - negative examples get a weight of c_-
- All computations that involve counts are henceforth computed with weights
 - instead of counting, we add up the weights
- Example:
 - Precision with weighted examples is
 \[
 prec = \frac{\sum_{x \in Cov \cap Pos} w_x}{\sum_{x \in Cov} w_x}
 \]
 - w_x is the weight of example x
 - Cov is the set of covered examples
 - Pos is the set of positive examples
 - if $w_x = 1$ for all x, this reduces to the familiar
 \[
 prec = \frac{p}{p+n}
 \]
Minimizing Expected Cost

- Given a specification of costs for correct and incorrect predictions
 - an example should be predicted to have the class that leads to the lowest expected cost
 - not necessarily to the lowest error
- The expected cost (loss) for predicting class \(i \) for an example \(x \)
 - sum over all possible outcomes, weighted by estimated probabilities
 \[
 L(i, x) = \sum_j C(i|j) P(j|x)
 \]
- A classifier should predict the class that minimizes \(L(i, x) \)
 - If the classifier can estimate the probability distribution \(P(i | x) \) of an example \(x \)
Minimizing Cost in Concept Learning

- For two classes:
 - predict positive if it has the smaller expected cost:
 \[
 C(\text{+|+}) \cdot \Pr(\text{+|x}) + C(\text{+|}-) \cdot \Pr(\text{-|x}) \leq C(\text{-|+}) \cdot \Pr(\text{+|x}) + C(\text{-|}-) \cdot \Pr(\text{-|x})
 \]

 - cost if we predict positive
 - cost if we predict negative

 - as \(\Pr(\text{+|x}) = 1 - \Pr(\text{-|x})\):
 - predict positive if \(\Pr(\text{+|x}) \geq \frac{C(\text{-|+}) - C(\text{-|}-)}{C(\text{+|+}) - C(\text{-|+}) - C(\text{-|}-)}\)

- Example:
 - Classifying a spam mail as ham costs 1, classifying ham as spam costs 99, correct classification cost nothing:
 \(\Rightarrow\) classify as spam if spam-probability is at least 99%
Calibrating a Ranking Classifier

- What is the right threshold of the ranking score $f(x)$ if the ranker does not estimate probabilities?
 - classifier can be calibrated by choosing appropriate threshold that minimizes costs
 - may also lead to improved performance in accuracy if probability estimates are bad (e.g., Naïve Bayes)

- Easy in the two-class case:
 - calculate cost for each point/threshold while tracing the curve
 - return the threshold with minimum cost

- Non-trivial in the multi-class case

Note: threshold selection is part of the classifier training and must therefore be performed on the training data!
Example: Uncalibrated threshold

True and false positive rates achieved by default threshold (NB. worse than always predicting majority class!)

Accuracy isometric for this domain

Slide adapted from P. Flach, ICML-04 Tutorial on ROC
Example: Calibrated threshold

Optimal achievable accuracy

Slide adapted from P. Flach, ICML-04 Tutorial on ROC
References

 http://www-cse.ucsd.edu/users/elkan/rescale.pdf

 http://www.csee.usf.edu/~candamo/site/papers/ROCintro.pdf

- Peter Flach: *The many faces of ROC analysis in machine learning*, Tutorial held at ICML-04.
 http://www.cs.bris.ac.uk/~flach/ICML04tutorial/
