Learning Single Rules

- Introduction
 - Concept Learning
 - Generality Relations
 - Refinement Operators
 - Structured Hypothesis Spaces

- Simple algorithms
 - Find-S
 - Find-G

- Version Spaces
 - Version Spaces
 - Candidate-Elimination Algorithm

- Batch Learning
Concept

- Attribute-Value Representation
 - each object is represented with a finite number of attributes

- Concept
 - A concept is a subset of all possible objects

- Example 1:
 - objects are points in a 2-d plane
 - a concept can be any subarea in the plane
 - can have many disconnected components
 - # objects and # concepts is infinite

- Example 2:
 - all attributes are Boolean, objects are Boolean vectors
 - a concept can be any subset of the set of possible objects
 - # concepts and # objects is finite
Concept Learning

- Given:
 - Positive Examples E^+
 - examples for the concept to learn (e.g., days with golf)
 - Negative Examples E^-
 - counter-examples for the concept (e.g., days without golf)
 - Hypothesis Space H
 - a (possibly infinite) set of candidate hypotheses
 - e.g., rules, rule sets, decision trees, linear functions, neural networks, ...

- Find:
 - Find the target hypothesis $h \in H$
 - the target hypothesis is the concept that was used (or could have been used) to generate the training examples
Correctness

- What is a good rule?
 - Obviously, a correct rule would be good
 - Other criteria: interpretability, simplicity, efficiency, ...

- Problem:
 - We cannot compare the learned hypothesis to the target hypothesis because we don't know the target
 - Otherwise we wouldn't have to learn...

- Correctness on training examples
 - completeness: Each positive example should be covered by the target hypothesis
 - consistency: No negative example should be covered by the target hypothesis

- But what we want is correctness on all possible examples!
Conjunctive Rule

\[\text{if } (\text{att}_i = \text{val}_{i,I}) \text{ and } (\text{att}_j = \text{val}_{j,J}) \text{ then } + \]

<table>
<thead>
<tr>
<th>Body of the rule (IF-part)</th>
<th>Head of the rule (THEN-part)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• contains a conjunction of conditions</td>
<td>• contains a prediction</td>
</tr>
<tr>
<td>• a condition typically consists of comparison of attribute values</td>
<td>• typically + if object belongs to concept, – otherwise</td>
</tr>
</tbody>
</table>

- Coverage
 - A rule is said to **cover** an example if the example satisfies the conditions of the rule.

- Prediction
 - If a rule covers an example, the rule's head is predicted for this example.
Propositional Logic

- simple logic of propositions
- combination of simple facts
- no variables, no functions, no relations
 \((\rightarrow\) predicate calculus)\
- Operators:
 - conjunction \(\wedge\), disjunction \(\vee\), negation \(\neg\), implication \(\rightarrow\), ...

- rules with attribute/value tests may be viewed as statements in propositional logic
 - because all statements in the rule implicitly refer to the same object
 - each attribute/value pair is one possible condition

- Example:
 - if \(\text{windy} = \text{false}\) and \(\text{outlook} = \text{sunny}\) then \(\text{golf}\)
 - in propositional logic: \(\neg\ \text{windy} \wedge \text{sunny}_{-}\text{outlook} \rightarrow \text{golf}\)
Generality Relation

- Intuitively:
 - A statement is more general than another statement if it refers to a superset of its objects
- Examples:

 All students are good in Machine Learning.
 All students who took a course in Machine Learning and Data Mining are good in Machine Learning
 All students who took course ML&DM at the TU Darmstadt are good in Machine Learning
 All students who took course ML&DM at the TU Darmstadt and passed with 2 or better are good in Machine Learning.
Generality Relation for Rules

- Rule \(r_1 \) is *more general* than \(r_2 \) \(r_1 \geq r_2 \)
 - if it covers all examples that are covered by \(r_2 \).
- Rule \(r_1 \) is *more specific* than \(r_2 \) \(r_1 \leq r_2 \)
 - if \(r_2 \) is more general than \(r_1 \).
- Rule \(r_1 \) is *equivalent* to \(r_2 \) \(r_1 \equiv r_2 \)
 - if it is more specific and more general than \(r_2 \).

Examples:
- if size > 5 then +
- if size > 3 then +
- if outlook = sunny then +
- if outlook = sunny and windy = false then +
- if animal = mammal then +
- if feeds_children = milk then +
Special Rules

- **Most general rule** \top
 - typically the rule that covers all examples
 - the rule with the body true
 - if disjunctions are allowed: the rule that allows all possible values for all attributes

- **Most specific rule** \bot
 - typically the rule that covers no examples
 - the rule with the body false
 - the conjunction of all possible values of each attribute
 - evaluates to false (only one value per attribute is possible)

- **Each training example can be interpreted as a rule**
 - body: all attribute-value tests that appear inside the example
 - the resulting rule is an immediate generalization of \bot
 - covers only a single example
Structured Hypothesis Space

The availability of a generality relation allows to structure the hypothesis space:

Structured Hypothesis Space

arrows to represent „is more general than“

Instance Space
Testing for Generality

- In general, we cannot check the generality of hypotheses
 - We do not have all examples of the domain available (and it would be too expensive to generate them)
- For single rules, we can approximate generality via a syntactic generality check:
 - Example: Rule \(r_1 \) is more general than \(r_2 \) if the set of conditions of \(r_1 \) forms a subset of the set of conditions of \(r_2 \).
 - Why is this only an approximation?
- For the general case, computable generality relations will rarely be available
 - E.g., rule sets
- Structured hypothesis spaces and version spaces are also a theoretical model for learning
Refinement Operators

- A refinement operator modifies a hypothesis
 - can be used to search for good hypotheses

- Generalization Operator:
 - Modify a hypothesis so that it becomes more general
 - e.g.: remove a condition from the body of a rule
 - necessary when a positive example is uncovered

- Specialization Operator:
 - Modify a hypothesis so that it becomes more specific
 - e.g., add a condition to the body of a rule
 - necessary when a negative examples is covered

- Other Refinement Operators:
 - in some cases, the hypothesis is modified in a way that neither generalizes nor specializes
 - e.g., stochastic or genetic search
Generalization Operators for Symbolic Attributes

There are different ways to generalize a rule, e.g.:

- **Subset Generalization**
 - a condition is removed
 - used by most rule learning algorithms

- **Disjunctive Generalization**
 - another option is added to the test

- **Hierarchical Generalization**
 - a generalization hierarchy is exploited

\[
\begin{align*}
\text{shape} &= \text{square} \land \text{color} = \text{blue} \rightarrow + \\
&\quad \Rightarrow \\
\text{color} &= \text{blue} \rightarrow +
\end{align*}
\]

\[
\begin{align*}
\text{shape} &= \text{square} \land \text{color} = \text{blue} \rightarrow + \\
&\quad \Rightarrow \\
\text{shape} &= (\text{square} \lor \text{rectangle}) \\
&\quad \land \text{color} = \text{blue} \rightarrow +
\end{align*}
\]

\[
\begin{align*}
\text{shape} &= \text{square} \land \text{color} = \text{blue} \rightarrow + \\
&\quad \Rightarrow \\
\text{shape} &= \text{quadrangle} \land \text{color} = \text{blue} \rightarrow +
\end{align*}
\]
Minimal Refinement Operators

- In many cases it is desirable, to only make minimal changes to a hypothesis
 - specialize only so much as is necessary to uncover a previously covered negative example
 - generalize only so much as is necessary to cover a previously uncovered positive example

- Minimal Generalization of a rule \(r \) relative to an example \(e \):
 - Find a generalization \(g \) of rule \(r \) and example \(e \) so that
 - \(g \) covers example \(e \) \((r \) did not cover \(e\))
 - there is no other rule \(g' \) so that \(e \leq g' < g \) and \(g' \geq r \)
 - need not be unique

- Minimal Specialization of a rule \(r \) relative to an example \(e \):
 - Analogously (specialize \(r \) so that it does not cover \(e \))
Minimal Generalization/Specialization

- least general generalization (lgg) of two rules
 - for Subset Generalization: the intersection of the conditions of the rules (or a rule and an example)

- most general specialization (mgs) of two rules
 - for Subset Generalization: the union of the conditions of the rules
Algorithm Find-S

I. $h = \text{most specific hypothesis in } H$

 (covering no examples)

II. for each training example e

 a) if e is negative

 • do nothing

 b) if e is positive

 • for each condition c in h

 • if c does not cover e

 • delete c from h

III. return h

Note: when the first positive example is encountered, step II.b)
amounts to converting the example into a rule
(The most specific hypothesis can be written as a conjunction of all possible values of each attribute.)
Example

<table>
<thead>
<tr>
<th>No.</th>
<th>Sky</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Water</th>
<th>Forecast</th>
<th>sport?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>normal</td>
<td>strong</td>
<td>warm</td>
<td>same</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>warm</td>
<td>same</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>rainy</td>
<td>cool</td>
<td>high</td>
<td>strong</td>
<td>warm</td>
<td>change</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>cool</td>
<td>change</td>
<td>yes</td>
</tr>
</tbody>
</table>

H₀: if false then +

if (sky = sunny & sky = rainy & ... & forecast = same & forecast = change) then +

<Ø,Ø,Ø,Ø,Ø,Ø>

H₁: <sunny, hot, normal, strong, warm, same>

H₂: <sunny, hot, ?, strong, warm, same>

H₃: <sunny, hot, ?, strong, warm, same>

H₄: <sunny, hot, ?, strong, ?, ?>

Short-hand notation:
- only body (head is +)
- one value per attribute
- Ø for false (full conjunction)
- ? for true (full disjunction)
Properties of Find-S

- **completeness:**
 - h covers all positive examples

- **consistency:**
 - h will not cover any negative training examples
 - but only if the hypothesis space contains a target concept (i.e., there is a single conjunctive rule that describes the target concept)

- **Properties:**
 - no way of knowing whether it has found the target concept (there might be more than one theory that are complete and consistent)
 - it only maintains one specific hypothesis (in other hypothesis languages there might be more than one)
 - Find-S prefers more specific hypotheses (hence the name) (it will never generalize unless forced by a training example)

Can we also find the most general hypothesis?
Algorithm Find-G

I. \(h = \text{most general hypothesis in } H \)
 (covering all examples)

II. for each training example \(e \)
 a) if \(e \) is positive
 • do nothing
 b) if \(e \) is negative
 • for some condition \(c \) in \(e \)
 • if \(c \) is not part of \(h \)
 • add a condition that negates \(c \)
 and covers all previous positive examples to \(h \)

III. return \(h \)
Example

<table>
<thead>
<tr>
<th>No.</th>
<th>Sky</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Water</th>
<th>Forecast</th>
<th>sport?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>normal</td>
<td>strong</td>
<td>warm</td>
<td>same</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>warm</td>
<td>same</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>rainy</td>
<td>cool</td>
<td>high</td>
<td>strong</td>
<td>warm</td>
<td>change</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>cool</td>
<td>change</td>
<td>yes</td>
</tr>
</tbody>
</table>

\(H_0: \) \textbf{if} true \textbf{ then } +

\[
\text{if} \ (\text{sky} = \text{sunny} \parallel \text{sky} = \text{rainy}) \ \& \ ... \ \& \ (\text{forecast} = \text{same} \parallel \text{forecast} = \text{change}) \textbf{ then } + \\
<?, ?, ?, ?, ?, ?>
\]

\(H_1: <?, ?, ?, ?, ?, ?> \)

\(H_2: <?, ?, ?, ?, ?, ?> \)

\(H_3: <?, ?, ?, ?, ?, \text{same}> \)

\(H_4: ???? \)

Other possibilities:
- \(<?, \ \text{hot}, ?, ?, ?, ?, ?> \)
- \(\text{<sunny}, ?, ?, ?, ?, ?> \)

There is no way to refine \(H_3 \) so that it covers example 4.
Uniqueness of Refinement Operators

- Subset Specialization is not unique
 - we could specialize any condition in the rule that currently covers the negative example
 - we could specialize it to any value other than the one that is used in the example
 → a wrong choice may lead to an impasse

- Possible Solutions:
 - more expressive hypothesis language (e.g., disjunctions of values)
 - backtracking
 - remember all possible specializations and remove bad ones later → Find-GSet algorithm

- Note: Generalization operators also need not be unique!
 - depends on the hypothesis language
Algorithm Find-GSet

I. \(h = \text{most general hypothesis in } H \) (covering all examples)
II. \(G = \{ h \} \)
III. for each training example \(e \)
 a) if \(e \) is positive
 - remove all \(h \in G \) that do not cover \(e \)
 b) if \(e \) is negative
 - for all hypotheses \(h \in G \) that cover \(e \)
 - \(G = G \setminus \{ h \} \)
 - for every condition \(c \) in \(e \) that is not part of \(h \)
 - for all conditions \(c' \) that negate \(c \)
 - \(h' = h \cup \{ c' \} \)
 - if \(h' \) covers all previous positive examples
 - \(G = G \cup \{ h' \} \)
IV. return \(G \)
Example

<table>
<thead>
<tr>
<th>No.</th>
<th>Sky</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Water</th>
<th>Forecast</th>
<th>sport?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>normal</td>
<td>strong</td>
<td>warm</td>
<td>same</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>warm</td>
<td>same</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>rainy</td>
<td>cool</td>
<td>high</td>
<td>strong</td>
<td>warm</td>
<td>change</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>cool</td>
<td>change</td>
<td>yes</td>
</tr>
</tbody>
</table>

\[G_0: \{ <?, ?, ?, ?, ?, ?> \} \]

\[G_1: \{ <?, ?, ?, ?, ?, ?> \} \]

\[G_2: \{ <?, ?, ?, ?, ?, ?> \} \]

We now have a set of hypotheses!

Remember all possible refinements that exclude example 3.
Correct Hypotheses

- **Find-GSet:**
 - finds *most general hypotheses* that are correct on the data
 - → has a bias towards general hypotheses

- **Find-SSet:**
 - can be defined analogously
 - finds *most specific hypotheses* that are correct on the data
 - → has a bias towards specific hypotheses

- Thus, the hypotheses found by Find-GSet or Find-SSet are not necessarily identical!

 → Could there be hypotheses that are correct but are neither found by Find-GSet nor by Find-SSet?
Version Space

- The version space in our example consists of 6 hypotheses
 - i.e. 6 rules are complete and consistent with the 4 seen examples

 \[
 \begin{align*}
 & <\text{sunny,}, ?, ?, \text{strong,}, ?, ?, > & <\text{sunny,}, \text{hot,}, ?, ?, ?, ?, > & <?, \text{hot,}, ?, \text{strong,}, ?, ?, > \\
 & & <\text{sunny,}, \text{hot,}, ?, ?, \text{strong,}, ?, ?, > \\
 S & <\text{sunny,}, \text{hot,}, ?, ?, \text{strong,}, ?, ?, > \\
 \end{align*}
 \]

- **Find-GSet** will find the rules in G
 - G are the most general rules in the version space

- **Find-SSet** will find the rules in S
 - S are the most specific rules in the version space
Version Space

- The Version Space V is the set of all hypotheses that
 - cover all positive examples (*completeness*)
 - do not cover any negative examples (*consistency*)

- For structured hypothesis spaces there is an efficient representation consisting of
 - the **general boundary** G
 - all hypotheses in V for which no generalization is in V
 - the **specific boundary** S
 - all hypotheses in V for which no specialization is in V

- a hypothesis in V that is neither in G nor in S is
 - a generalization of at least one hypothesis in S
 - a specialization of at least one hypothesis in G
Candidate Elimination Algorithm

- \(G = \) set of maximally general hypotheses
- \(S = \) set of maximally specific hypotheses

- For each training example \(e \)
 - if \(e \) is positive
 - For each hypothesis \(g \) in \(G \) that does not cover \(e \)
 - remove \(g \) from \(G \)
 - For each hypothesis \(s \) in \(S \) that does not cover \(e \)
 - remove \(s \) from \(S \)
 - \(S = S \cup \) all hypotheses \(h \) such that
 - \(h \) is a minimal generalization of \(s \)
 - \(h \) covers \(e \)
 - some hypothesis in \(G \) is more general than \(h \)
 - remove from \(S \) any hypothesis that is more general than another hypothesis in \(S \)
Candidate Elimination Algorithm (Ctd.)

- if e is negative
 - For each hypothesis s in S that covers e
 - remove s from S
 - For each hypothesis g in G that covers e
 - remove g from G
 - $G = G \cup$ all hypotheses h such that
 - h is a minimal specialization of g
 - h does not cover e
 - some hypothesis in S is more specific than h
 - remove from G any hypothesis that is less general than another hypothesis in G
Example

<table>
<thead>
<tr>
<th>No.</th>
<th>Sky</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Water</th>
<th>Forecast</th>
<th>sport?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sunny</td>
<td>hot</td>
<td>normal</td>
<td>strong</td>
<td>warm</td>
<td>same</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>warm</td>
<td>same</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>rainy</td>
<td>cool</td>
<td>high</td>
<td>strong</td>
<td>warm</td>
<td>change</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>sunny</td>
<td>hot</td>
<td>high</td>
<td>strong</td>
<td>cool</td>
<td>change</td>
<td>yes</td>
</tr>
</tbody>
</table>

\[
S_0: \{ <\varnothing,\varnothing,\varnothing,\varnothing,\varnothing,\varnothing> \} \\
G_0: \{ <?, ?, ?, ?, ?, ?> \}
\]

\[
S_1: \{ <\text{sunny}, \text{hot}, \text{normal}, \text{strong}, \text{warm}, \text{same}> \} \\
\]

\[
S_2: \{ <\text{sunny}, \text{hot}, ?, \text{strong}, \text{warm}, \text{same}> \} \\
\]

\[
S_3: \{ <\text{sunny}, \text{hot}, ?, \text{strong}, \text{warm}, \text{same}> \} \\
<?, \text{hot}, ?, ?, ?, ?> \\
<?, ?, ?, ?, ?, \text{same}> \}
\]

\[
S_4: \{ <\text{sunny}, \text{hot}, ?, \text{strong}, ?, ?> \} \\
G_4: \{ <\text{sunny}, ?, ?, ?, ?, ?> \} \\
<?, \text{hot}, ?, ?, ?, ?> \}
How to Classify these Examples?

- Version Space:

S <sunny, hot, ?, strong, ?, ?>

- How to Classify these Examples?
How to Classify these Examples?

- Version Space:

 \[
 S \quad <\text{sunny}, \text{hot}, ?, \text{strong}, ?, ?>
 \]

- How to Classify these Examples?

<table>
<thead>
<tr>
<th>No.</th>
<th>Sky</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Water</th>
<th>Forecast</th>
<th>sport?</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>sunny</td>
<td>hot</td>
<td>normal</td>
<td>strong</td>
<td>cool</td>
<td>change</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>rainy</td>
<td>cool</td>
<td>normal</td>
<td>light</td>
<td>warm</td>
<td>same</td>
<td>no</td>
</tr>
<tr>
<td>7</td>
<td>sunny</td>
<td>hot</td>
<td>normal</td>
<td>light</td>
<td>warm</td>
<td>same</td>
<td>?</td>
</tr>
<tr>
<td>8</td>
<td>sunny</td>
<td>cool</td>
<td>normal</td>
<td>strong</td>
<td>warm</td>
<td>same</td>
<td>maybe no</td>
</tr>
</tbody>
</table>
Properties

- Convergence towards target theory
 - convergence as soon as \(S = G \)
- Reliable classification with partially learned concepts
 - an example that matches all elements in \(S \) must be a member of the target concept
 - an example that matches no element in \(G \) cannot be a member of the target concept
 - examples that match parts of \(S \) and \(G \) are undecidable
- no need to remember examples (incremental learning)

Assumptions

- no errors in the training set
- the hypothesis space contains the target theory
- practical only if generality relation is (efficiently) computable
Other Generality Relations

- First-Order
 - generalize the arguments of each pair of literals of the same relation

- Hierarchical Values
 - generalization and specialization for individual attributes follows the ontology
Generalization Operators for Numerical Attributes

- Subset Generalization
 - generalization works as in symbolic case
 - specialization is difficult as there are infinitely many different values to specialize to

- Disjunctive Generalization
 - specialization and generalization as in symbolic case
 - problematic if no repetition of numeric values can be expected
 - generalization will only happen on training data
 - no new unseen examples are covered after a generalization

- Interval Generalization
 - the range of possible values is represented by an open or a closed interval
 - generalize by widening the interval to include the new point
 - specialize by shortening the interval to exclude the new point
Batch induction

- So far our algorithms looked at
 - all theories at the same time (implicitly through the version space)
 - and processed examples incrementally
- We can turn this around:
 - work on the theories incrementally
 - and process all examples at the same time
- Basic idea:
 - try to quickly find a complete and consistent rule
 - need not be in either S or G (but in the version space)

→ We can define an algorithm similar to FindG:
 - successively refine rule by adding conditions:
 - evaluate all refinements and pick the one that looks best
 - until the rule is consistent
Algorithm Batch-FindG

I. \(h = \text{most general hypothesis in } H \)
 \(C = \text{set of all possible conditions} \)

II. while \(h \) covers negative examples
 I. \(h_{\text{best}} = h \)
 II. for each possible condition \(c \in C \)
 a) \(h' = h \cup \{ c \} \)
 b) if \(h' \) covers
 • all positive examples
 • and fewer negative examples than \(h_{\text{best}} \)
 then \(h_{\text{best}} = h' \)

III. \(h = h_{\text{best}} \)

III. return \(h_{\text{best}} \)

Scan through all examples in database:
• count covered positives
• count covered negatives
Properties

- General-to-Specific (Top-Down) Search
 - similar to FindG:
 - FindG makes an arbitrary selection among possible refinements, taking the risk that it may lead to an inconsistency later
 - Batch-FindG selects next refinement based on all training examples
 - Heuristic algorithm
 - among all possible refinements, we select the one that leads to the fewest number of covered negatives
 - IDEA: the more negatives are excluded with the current condition, the less have to be excluded with subsequent conditions
 - Converges towards some theory in \(V \)
 - not necessarily towards a theory in \(G \)
 - Not very efficient, but quite flexible
 - criteria for selecting conditions could be exchanged