Association Rule Discovery

- Association Rules describe frequent co-occurrences in sets
 - an *item set* is a subset A of all possible items I

- Example Problems:
 - Which products are frequently bought together by customers? *(Basket Analysis)*
 - DataTable = Receipts x Products
 - Results could be used to change the placements of products in the market
 - Which courses tend to be attended together?
 - DataTable = Students x Courses
 - Results could be used to avoid scheduling conflicts....
Association Rules

- **General Form:**
 \[A_1, A_2, \ldots, A_n \rightarrow B_1, B_2, \ldots, B_m \]

- **Interpretation:**
 - When items \(A_i \) appear, items \(B_i \) also appear with a certain probability

- **Examples:**
 - **Bread, Cheese \(\rightarrow \) RedWine.**
 Customers that buy bread and cheese, also tend to buy red wine.
 - **MachineLearning \(\rightarrow \) WebMining, MLPraktikum.**
 Students that take 'Machine Learning' also take 'Web Mining' and the 'Machine Learning Praktikum'
Basic Quality Measures

- **Support**
 \[\text{support}(A \rightarrow B) = \text{support}(A \cup B) = \frac{n(A \cup B)}{n} \]
 - proportion of examples for which both the head and the body of the rule are true
 - How many times does this rule cover?

- **Confidence**
 \[\text{confidence}(A \rightarrow B) = \frac{\text{support}(A \cup B)}{\text{support}(A)} = \frac{n(A \cup B)}{n(A)} \]
 - proportion of examples for which the head is true among those for which the body is true
 - How strong is the implication of the rule?

- **Example:**
 - **Bread, Cheese \Rightarrow RedWine** (S = 0.01, C = 0.8)
 - 80% of all customers that bought bread and cheese also bought red wine.
 - 1% of all customers bought all three items.
Learning Problem

Find all association rules with a given minimum support s_{min} and a given minimum confidence c_{min}

- **Frequent itemsets:**
 - An itemset A is frequent if $\text{support}(A) \geq s_{\text{min}}$

- **Key Observation** (anti-monotonicity of support):
 - Adding a condition (specializing the rule) may never increase support/frequency of a rule (or of its itemset).
 - $C \subseteq D \Rightarrow \text{support}(C) \geq \text{support}(D)$

 Therefore:
 - an itemset can only be frequent if all of its subsets are frequent
 - all supersets of an infrequent itemset are also infrequent
Support/Confidence Filtering

- filter rules that
 - cover not enough positive examples \((p < s_{\text{min}}) \)
 - are not precise enough \((h_{\text{prec}} < c_{\text{min}}) \)

- effects:
 - all but a region around \((0,P)\) is filtered
APRIORI Step 1: Finding all Frequent Itemsets

1. \(k = 1 \)
2. \(C_1 = I \) (all items)
3. while \(C_k > \emptyset \)
 - (a) \(S_k = C_k \setminus \) all infrequent itemsets in \(C_k \) ← check on data
 - (b) \(C_{k+1} = \) all sets with \(k+1 \) elements that can be formed by forming the union of two itemsets in \(S_k \)
 - (c) \(C_{k+1} = C_{k+1} \setminus \) all itemsets for which not all \(k \)-subsets are in \(S_k \)
 - (d) \(S = S + S_k \)
 - (e) \(k++ \)
4. return \(S \)

Candidate itemsets are stored in efficient data structures such as hash trees or tries.
Efficient Candidate Generation

- Step 3(b) of the algorithm:
 - combines two frequent k-itemsets to a candidate for a (k+1)-itemset
 - can be performed efficiently:
 - assume items are ordered in some way (e.g., alphabetically)
 - Then:
 \[C_{k+1} = \{ \langle X_1, ..., X_{k-1}, X_k, X_{k+1} \rangle : \langle X_1, ..., X_{k-1}, X_k \rangle \in C_k, \langle X_1, ..., X_{k-1}, X_{k+1} \rangle \in C_k, X_k < X_{k+1} \} \]
 - No candidate will be missed because of anti-monotonicity of support

- Step 3(c) of the algorithm:
 - testing all k-item subsets of a k+1-itemset
 - can be generated by deleting each of the first k-1 conditions
 - delete the candidate set if not all k-item subsets are frequent
Example

<table>
<thead>
<tr>
<th></th>
<th>beer</th>
<th>chips</th>
<th>pizza</th>
<th>wine</th>
</tr>
</thead>
<tbody>
<tr>
<td>customer 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>customer 2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>customer 3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>customer 4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Find all itemsets with $s_{\text{min}} = 0.25$
 - $C_1 = \{ \{\text{beer}\}, \{\text{chips}\}, \{\text{pizza}\}, \{\text{wine}\} \}$
 $S_1 = \{ \{\text{beer}\}, \{\text{chips}\}, \{\text{pizza}\}, \{\text{wine}\} \}$
 - $C_2 = \{ \{\text{beer, chips}\}, \{\text{beer, pizza}\}, \{\text{beer, wine}\}, \{\text{chips, pizza}\}, \{\text{chips, wine}\}, \{\text{pizza, wine}\} \}$
 $S_2 = \{ \{\text{beer, chips}\}, \{\text{beer, wine}\}, \{\text{chips, pizza}\}, \{\text{chips, wine}\}, \{\text{pizza, wine}\} \}$
 - $C_3 = \{ \{\text{beer, chips, wine}\}, \{\text{chips, pizza, wine}\} \}$
 $S_3 = \{ \{\text{beer, chips, wine}\} \}$
 - $C_4 = 0$
Search Space and Border

• Search Space:
 - The search space for frequent itemsets can be structured with the subset relationship

• Border:
 - The border are all itemsets for which
 • all subsets are frequent
 • no superset is frequent
 - positive border:
 • elements of the border that are frequent
 - negative border:
 • elements of the border that are infrequent

• Frequent itemsets = subsets of border + positive border
Search Space and Border

Source: Bart Goethals, Survey on Frequent Pattern Mining, 2002
APRIORI Step 2: Generate Association Rules

- Association rules can be generated from frequent item sets
 - for each frequent item set \(X \) there are \(2^{|X|} \) possible association rules of the form \(Y \rightarrow Z \), with \(Y \cup Z = X \) and \(Y \cap Z = \emptyset \)
 - confidence of the rule can be computed efficiently from the support of \(Y \) and \(Z \).

- Efficient generation of association rules:
 - the generation of all subsets can be made much more efficient by exploiting the anti-monotonicity property in the heads of the rules
 - Confidence Anti-monotonicity:
 - \(\text{confidence}(A \rightarrow B, C) \leq \text{confidence}(A, B \rightarrow C) \)
 - Warum?
 - Thus, rules can be generated with an algorithm similar to FreqSet (starting with heads with length 1, etc.)
 - if a head causes the rule to become unconfident, all supersets of the head must be unconfident
Example

\{\text{beer, chips, wine}\} \Rightarrow \emptyset

\{\text{chips, wine}\} \Rightarrow \{\text{beer}\}
\{\text{beer, wine}\} \Rightarrow \{\text{chips}\}
\{\text{beer, chips}\} \Rightarrow \{\text{wine}\}

\{\text{wine}\} \Rightarrow \{\text{beer, chips}\}
\{\text{chips}\} \Rightarrow \{\text{beer, wine}\}
\{\text{beer}\} \Rightarrow \{\text{chips, wine}\}

\emptyset \Rightarrow \{\text{beer, chips, wine}\}

<table>
<thead>
<tr>
<th>Rule</th>
<th>Support</th>
<th>Frequency</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>{\text{beer}} \Rightarrow {\text{chips}}</td>
<td>2</td>
<td>50%</td>
<td>100%</td>
</tr>
<tr>
<td>{\text{beer}} \Rightarrow {\text{wine}}</td>
<td>1</td>
<td>25%</td>
<td>50%</td>
</tr>
<tr>
<td>{\text{chips}} \Rightarrow {\text{beer}}</td>
<td>2</td>
<td>50%</td>
<td>66%</td>
</tr>
<tr>
<td>{\text{pizza}} \Rightarrow {\text{chips}}</td>
<td>1</td>
<td>25%</td>
<td>50%</td>
</tr>
<tr>
<td>{\text{pizza}} \Rightarrow {\text{wine}}</td>
<td>1</td>
<td>25%</td>
<td>50%</td>
</tr>
<tr>
<td>{\text{wine}} \Rightarrow {\text{beer}}</td>
<td>1</td>
<td>25%</td>
<td>50%</td>
</tr>
<tr>
<td>{\text{wine}} \Rightarrow {\text{chips}}</td>
<td>1</td>
<td>25%</td>
<td>50%</td>
</tr>
<tr>
<td>{\text{wine}} \Rightarrow {\text{pizza}}</td>
<td>1</td>
<td>25%</td>
<td>50%</td>
</tr>
<tr>
<td>{\text{beer, chips}} \Rightarrow {\text{wine}}</td>
<td>1</td>
<td>25%</td>
<td>50%</td>
</tr>
<tr>
<td>{\text{beer, wine}} \Rightarrow {\text{chips}}</td>
<td>1</td>
<td>25%</td>
<td>100%</td>
</tr>
<tr>
<td>{\text{chips, wine}} \Rightarrow {\text{beer}}</td>
<td>1</td>
<td>25%</td>
<td>100%</td>
</tr>
<tr>
<td>{\text{beer}} \Rightarrow {\text{chips, wine}}</td>
<td>1</td>
<td>25%</td>
<td>50%</td>
</tr>
<tr>
<td>{\text{wine}} \Rightarrow {\text{beer, chips}}</td>
<td>1</td>
<td>25%</td>
<td>50%</td>
</tr>
</tbody>
</table>

Source: Bart Goethals, Survey on Frequent Pattern Mining, 2002
• Find all association rules with $s_{\text{min}} = 0.5$ and $c_{\text{min}} = 1.0$

1. find frequent itemsets:

- $C_1 = \{ \{\text{bread}\}, \{\text{butter}\}, \{\text{coffee}\}, \{\text{milk}\}, \{\text{sugar}\} \}$
 $S_1 = \{ \{\text{bread}\}, \{\text{coffee}\}, \{\text{milk}\}, \{\text{sugar}\} \}$

- $C_2 = \{ \{\text{bread, coffee}\}, \{\text{bread, milk}\}, \{\text{bread, sugar}\}, \{\text{coffee, milk}\}, \{\text{coffee, sugar}\}, \{\text{milk, sugar}\} \}$
 $S_2 = \{ \{\text{bread, sugar}\}, \{\text{coffee, milk}\}, \{\text{coffee, sugar}\}, \{\text{milk, sugar}\} \}$

- $C_3 = \{ \{\text{coffee, milk, sugar}\} \}$
 $S_3 = \{ \{\text{coffee, milk, sugar}\} \}$

- $C_4 = 0$
Example 2 (Ctd.)

2. Find all rules with $c_{\min} = 1.0$

- bread \Rightarrow sugar $(0.5, 1.0)$
- milk \Rightarrow coffee $(0.75, 1.0)$
- coffee \Rightarrow milk $(0.75, 1.0)$
- milk, sugar \Rightarrow coffee $(0.5, 1.0)$
- sugar, coffee \Rightarrow milk $(0.5, 1.0)$

● Other rules have

- too small frequency (filtered out by Step 1)
 - butter \Rightarrow bread, sugar $(0.25, 1.0)$
- too small confidence (filtered out by Step 2)
 - milk, coffee \Rightarrow sugar $(0.5, 0.67)$
Properties of \textsc{APRIORI}

- **Efficiency**
 - only needs k passes through the database to find all association rules of length k
 - important if database is too big for memory
 - bottle-neck:
 - large number of itemsets must be tested for each item
- **Search space**
 - significant reduction of search space over searching all possible rules ($2^{|I|}$ different subsets)
- **Results**
 - generates far too many rules for practical purposes
 - further filtering of result sets is necessary
 - e.g., sort rules by some measure of interestingness and report the best n rules
Filtering Association Rules

• assume rules $R_1: A, B \rightarrow C$ and $R_2: A \rightarrow C$

• OpusMagnum (Webb, 2000) filters rule R_1 if it is
 ▪ trivial:
 ● R_2 covers the same examples
 ▪ unproductive:
 ● R_2 has an equal or higher confidence
 ▪ insignificant:
 ● R_2's confidence is not significantly worse (binomial test)

• Interesting Measures:
 ▪ sort rules by some numerical measure of interestingness
 ▪ return the n best rules (n set by user)
 ● it is hard to formalize the notion of “interestingness“
Interestingness Measures

• Basic problem:
 - support and confidence are not sufficient for capturing whether a rule is interesting or not
 - a rule may have high support and confidence, but still not be interesting of surprising

• Example:
 - diapers => beer (c=0.9)
 90% of customers that buy diapers also buy beer.
 - looks like an interesting finding
 - BUT: if we know that 90% of all customers buy beer, the rule is not at all interesting
Lift & Leverage

- **Lift:**
 - ratio of confidence over a priori expectation
 \[
 \text{lift}(A \rightarrow B) = \frac{n(A \cup B)}{n(A) + n(B)} = \frac{\text{confidence}(A \rightarrow B)}{\text{support}(B)} = \frac{\text{support}(A \rightarrow B)}{\text{support}(A) \cdot \text{support}(B)}
 \]

- **Leverage:**
 - Difference between support and expected support if rule head and body were independent
 \[
 \text{leverage}(A \rightarrow B) = \text{support}(A \rightarrow B) - \text{support}(A) \cdot \text{support}(B)
 \]
 - leverage is a lower bound for support
 - high leverage implies high support
 - optimizing only leverage guarantees a certain minimum support (contrary to optimizing only confidence or only lift)
Best-First Search

- Frequent set based search (Apriori)
 - typically far too many rules
 - pruning is based on support/frequency, even if interesting measure is different
 - focus on minimizing the number of database scans
- OpusMagnum (Webb, KDD-2000)
 - assumes examples fit in main memory
 - directly searches for the n best rules in a best-first fashion
 - rule quality can be based on a variety of criteria
 - many pruning options
 - *optimistic pruning*: prune a rule if the highest possible value of its successors is too low to be of interest
 - syntactic constraints really reduce search space
 - for Apriori they only affect phase 2.
Vertical Database Layout

- **Horizontal database**
 - Each transaction lists bought items

- **Vertical database**
 - Each item lists the transactions that bought it

<table>
<thead>
<tr>
<th></th>
<th>beer</th>
<th>wine</th>
<th>chips</th>
<th>pizza</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>400</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- If the vertical database fits into memory
 - Itemsets can be joined by computing the intersection of the transactions that bought it
 - e.g., \{ beer \} = \{1,1,0,0\} ∪ \{ wine \} = \{1,0,1,0\} → \{ beer, wine \} = \{1,0,0,0\}
 - Transactions that appear in no k-item can be deleted
 - Will not appear in any (k+1)-item
 - Algorithm works only if database fits into memory!
Depth-First Search

- APriori searches for itemsets in a breadth-first fashion.
- There are other algorithms that find frequent item sets depth-first:
 - Eclat (Zaki, 2000)
 - recursively generates all item-sets with the same prefix
 - uses vertical database layout
 - but data can be divided into smaller subsets based on common prefixes
 - FP-Growth (Han, Pei, Yin, 2000)
 - quite similar to Eclat, but uses an elaborate data structure, a frequent pattern tree (FP-tree)
- The Association rule growing phase is the same for these algorithms.
Representational Extensions

- **Nominal Attributes:**
 - each n-valued attribute can be transformed into n binary attributes
 - increased efficiency if the algorithm knows that only one of these n values can appear in an item set
- **Abstraction Hierarchies:**
 - forming groups of items (e.g., dairy products) and using them as additional items
- **Sequences:**
 - efficient extension of FreqSet to find frequent subsequences
- **Rule Schemata:**
 - the user may restrict the pattern of rules of interest (e.g., only rules with a certain set of attributes in the head)
Application Telecommunication Alarm Sequence Analyzer (TASA)

Goal:
- find temporal dependencies in alarm sequences for
 - recognizing redundant alarms
 - detecting problems in the networks
 - early warning of severe problems

Data:
- temporal sequence of alarms in a finnish telecommunications network
- 200-10000 alarms/day, 73679 alarms over 50 days, 287 different alarm types

Find:
- associations in time sequences of a certain length
- IF alarm A and alarm B occur within 5 seconds THEN with probability 0.7, alarm C will follow within 60 seconds