
1 © J. Fürnkranz

Learning of Rule SetsLearning of Rule Sets

● Introduction
 Learning Rule Sets
 Terminology
 Coverage Spaces

● Separate-and-Conquer Rule Learning
 Covering algorithm
 Top-Down Hill-Climbing
 Rule Evaluation Heuristics
 Overfitting and Pruning
 Multi-Class Problems
 Bottom-Up Hill-Climbing

2 © J. Fürnkranz

Learning Rule SetsLearning Rule Sets

● many datasets cannot be solved with a single rule
 not even the simple weather dataset
 they need a rule set for formulating a target theory

● finding a computable generality relation for rule sets is not
trivial
 adding a condition to a rule specializes the theory
 adding a new rule to a theory generalizes the theory

● practical algorithms use different approaches
 covering or separate-and-conquer algorithms

3 © J. Fürnkranz

Rules vs. Trees Rules vs. Trees

● Rule sets are at least as expressive as decision trees
 a decision tree can be viewed as a set of non-overlapping

rules
 typically learned via divide-and-conquer algorithms

(recursive partitioning)
● Many concepts have a shorter description as a rule set

 exceptions: if one or more attributes are relevant for the
classification of all examples (e.g., parity)

4 © J. Fürnkranz

A sample taskA sample task
Temperature Outlook Humidity Windy Play Golf?

hot sunny high false no
hot sunny high true no
hot overcast high false yes
cool rain normal false yes
cool overcast normal true yes
mild sunny high false no
cool sunny normal false yes
mild rain normal false yes
mild sunny normal true yes
mild overcast high true yes
hot overcast normal false yes
mild rain high true no
cool rain normal true no
mild rain high false yes

● Task:
 Find a rule set that correctly predicts the dependent

variable from the observed variables

5 © J. Fürnkranz

A Simple SolutionA Simple Solution
IF T=hot AND H=high AND O=overcast AND W=false THEN yes
IF T=cool AND H=normal AND O=rain AND W=false THEN yes
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes
IF T=mild AND H=normal AND O=rain AND W=false THEN yes
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes
IF T=mild AND H=high AND O=overcast AND W=true THEN yes
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes
IF T=mild AND H=high AND O=rain AND W=false THEN yes

● The solution is
 a set of rules
 that is complete and consistent on the training examples
→ it must be part of the version space

● but it does not generalize to new examples!

6 © J. Fürnkranz

The Need for a BiasThe Need for a Bias

● rule sets can be generalized by
 generalizing an existing rule (as usual)
 introducing a new rule (this is new)

● a minimal generalization could be
 introduce a new rule that covers only the new example

● Thus:
 The solution on the previous slide will be found as a result of

the FindS algorithm
 FindG (or Batch-FindG) are less likely to find such a bad

solution because they prefer general theories
● But in principle this solution is part of the hypothesis space

and also of the version space
⇒ we need a search bias to prevent finding this solution!

7 © J. Fürnkranz

A Better SolutionA Better Solution

IF Outlook = overcast THEN yes
IF Humidity = normal AND Outlook = sunny THEN yes
IF Outlook = rainy AND Windy = false THEN yes

8 © J. Fürnkranz

Recap: Batch-FindRecap: Batch-Find

● Abstract algorithm for learning a single rule:
1. Start with an empty theory T and training set E
2. Learn a single (consistent) rule R from E and add it to T
3. return T

● Problem:
 the basic assumption is that the found rules are complete,

i.e., they cover all positive examples
 What if they don't?

● Simple solution:
 If we have a rule that covers part of the positive examples:
 add some more rules that cover the remaining examples

9 © J. Fürnkranz

Separate-and-ConquerSeparate-and-Conquer
Rule LearningRule Learning

 Learn a set of rules, one by one
1. Start with an empty theory T and training set E
2. Learn a single (consistent) rule R from E and add it to T
3. If T is satisfactory (complete), return T
4. Else:

● Separate: Remove examples explained by R from E
● Conquer: If E is non-empty, goto 2.

● One of the oldest family of learning algorithms
 goes back AQ (Michalski, 60s)
 FRINGE, PRISM and CN2: relation to decision trees (80s)
 popularized in ILP (FOIL and PROGOL, 90s)
 RIPPER brought in good noise-handling

● Different learners differ in how they find a single rule

10 © J. Fürnkranz

Separate-and-Conquer Rule LearningSeparate-and-Conquer Rule Learning

``

Quelle für Grafiken: http://www.cl.uni-heidelberg.de/kurs/ws03/einfki/KI-2004-01-13.pdf

11 © J. Fürnkranz

TerminologyTerminology

predicted + predicted -
class + p (true positives) P-p (false negatives) P
class - n (false positives) N-n (true negatives) N

p + n P+N – (p+n) P+N

● training examples
● P: total number of positive examples
● N: total number of negative examples

● examples covered by the rule (predicted positive)
● true positives p: positive examples covered by the rule
● false positives n: negative examples covered by the rule

● examples not covered the rule (predicted negative)
● false negatives P-p: positive examples not covered by the rule
● true negatives N-n: negative examples not covered by the rule

12 © J. Fürnkranz

Coverage Spaces Coverage Spaces

● good tools for visualizing properties of covering algorithms
● each point is a theory covering p positive and n negative examples

universal theory:
all examples
are covered

empty theory:
no examples
are covered

perfect theory:
all positive and

no negative
examples

are covered

default distribution:
maintain P/(P+N)

positive and N/(P+N)
negative examples

opposite theory:
all negative and

no positive
examples

are covered

iso-accuracy:
cover same
amount of
positive

and negative
examples

● language bias:
 which type of

conditions are allowed
(static)

 which combinations of
condictions are
allowed (dynamic)

● search bias:
 search heuristics
 search algorithm

(greedy, stochastic,
exhaustive)

 search strategy (top-
down, bottom-up)

● overfitting avoidance
bias:
 pre-pruning

(stopping criteria)
 post-pruning

14 © J. Fürnkranz

Covering StrategyCovering Strategy

● Covering or Separate-and-Conquer
rule learning learning algorithms
learn one rule at a time

● This corresponds to a path in
coverage space:

● The empty theory R0 (no rules)
corresponds to (0,0)

● Adding one rule never
decreases p or n because
adding a rule covers more
examples (generalization)

● The universal theory R+ (all
examples are positive)
corresponds to (N,P)

15 © J. Fürnkranz

Top-Down Hill-ClimbingTop-Down Hill-Climbing

 Top-Down: A rule is successively specialized

1. Start with an empty rule R that covers all examples

2. Evaluate all possible ways to add a condition to R

3. Choose the best one (according to some heuristic)

4. If R is satisfactory, return it

5. Else goto 2.

● Almost all greedy s&c rule learning systems use this
strategy

16 © J. Fürnkranz

Top-Down Hill-ClimbingTop-Down Hill-Climbing
● successively extends a rule by adding conditions

● This corresponds to a path in
coverage space:
 The rule p:-true covers all

examples (universal theory)
 Adding a condition never

increases p or n (specialization)
 The rule p:-false covers

no examples (empty theory)

● which conditions are selected depends on a heuristic function that
estimates the quality of the rule

17 © J. Fürnkranz

Rule Learning HeuristicsRule Learning Heuristics

● Adding a rule should
 increase the number of covered negative examples as little as

possible (do not decrease consistency)
 increase the number of covered positive examples as much

as possible (increase completeness)
● An evaluation heuristic should therefore trade off these two

extremes
 Example: Laplace heuristic

● grows with
● grows with

 Note: Precision is not a good heuristic. Why?

hLap=
p1

pn2

hPrec=
p

pn

p∞
n0

18 © J. Fürnkranz

ExampleExample

Condition p n Precision Laplace p-n
Hot 2 2 0.5000 0.5000 0

Temperature = Mild 3 1 0.7500 0.6667 2
Cold 4 2 0.6667 0.6250 2
Sunny 2 3 0.4000 0.4286 -1

Outlook = Overcast 4 0 1.0000 0.8333 4
Rain 3 2 0.6000 0.5714 1

Humidity = High 3 4 0.4286 0.4444 -1
Normal 6 1 0.8571 0.7778 5

Windy = True 3 3 0.5000 0.5000 0
False 6 2 0.7500 0.7000 4

● Heuristics Precision and Laplace
 add the condition Outlook= Overcast to the (empty) rule
 stop and try to learn the next rule

● Heuristic Accuracy / p-n
 adds Humidity = Normal
 continue to refine the rule (until no covered negative)

19 © J. Fürnkranz

Isometrics in Coverage SpaceIsometrics in Coverage Space

● Isometrics are lines that connect points for which a
function in p and n has equal values
 Examples: Isometrics for heuristics h

p
 = p and h

n
 = -n

20 © J. Fürnkranz

Precision (Confidence)Precision (Confidence)

● basic idea:
percentage of positive
examples among covered
examples

● effects:
 rotation around origin

(0,0)
 all rules with same

angle equivalent
 in particular, all rules

on P/N axes are
equivalent

hPrec=
p

pn

21 © J. Fürnkranz

Entropy and Gini Index Entropy and Gini Index





 effects:
 entropy and Gini index are

equivalent
 like precision, isometrics

rotate around (0,0)
 isometrics are symmetric

around 45o line
 a rule that only covers

negative examples is as
good as a rule that only
covers positives

hEnt=− p
pn

log2
p

pn
 n

pn
log2

n
pn



hGini=1− p
pn


2

− n
pn


2

≃ pn
 pn2

22 © J. Fürnkranz

Accuracy Accuracy

● basic idea:
percentage of correct
classifications
(covered positives plus
uncovered negatives)

● effects:
 isometrics are parallel

to 45o line
 covering one positive

example is as good as
not covering one
negative example

hAcc=
pN−n

PN
≃ p−n

23 © J. Fürnkranz

Weighted Relative Accuracy Weighted Relative Accuracy

● basic idea:
normalize accuracy with
the class distribution

● effects:
 isometrics are parallel

to diagonal
 covering x% of the

positive examples is as
good as not covering
x% of the negative
examples

hAcc=
pn

PN
 p

pn
− P

PN
≃ p

P
− n

N

24 © J. Fürnkranz

Linear Cost MetricLinear Cost Metric

● Accuracy and weighted relative accuracy are only two
special cases of the general case with linear costs:
 costs c mean that covering 1 positive example is as good

as not covering c/(1-c) negative examples

 The general form is then
● the isometrics of hcost are parallel lines with slope (1-c)/c

hcost=cp−1−cn

c measure

½ accuracy

N/(P+N) weighted relative accuracy

0 excluding negatives at all costs

1 covering positives at all costs

25 © J. Fürnkranz

Laplace-Estimate Laplace-Estimate



● basic idea:
precision, but count
coverage for positive
and negative examples
starting with 1 instead
of 0

● effects:
 origin at (-1,-1)
 different values on

p=0 or n=0 axes
 not equivalent to

precision

hLap=
p1

 p1n1
=

p1
pn2

26 © J. Fürnkranz

m-Estimate m-Estimate
● basic idea:

initialize the counts with m
examples in total, distributed
according to the prior
distribution P/(P+N) of
 p and n.

● effects:
 origin shifts to

(-mP/(P+N),-mN/(P+N))
 with increasing m, the

lines become more and
more parallel

 can be re-interpreted as a
trade-off between WRA
and precision/confidence

hm=
pm P

PN

 pm P
PN

nm N
PN


=

pm P
PN

pnm

27 © J. Fürnkranz

Generalized m-EstimateGeneralized m-Estimate

● One can re-interpret the m-Estimate:
 Re-interpret c = N/(P+N) as a cost factor like in the general

cost metric
 Re-interpret m as a trade-off between precision and cost-

metric
● m = 0: precision (independent of cost factor)
● m∞: the isometrics converge towards the parallel isometrics of

the cost metric
● Thus, the generalized m-Estimate may be viewed as a

means of trading off between precision and the cost metric

28 © J. Fürnkranz

Optimizing Precision Optimizing Precision
● Precision tries to pick the steepest continuation of the curve

● tries to maximize the area under this curve
(→ AUC: Area Under the ROC Curve)

● no particular angle of isometrics is preferred, i.e. no preference for
a certain cost model

29 © J. Fürnkranz

Optimizing AccuracyOptimizing Accuracy
● Accuracy assumes the same costs in all subspaces

● a local optimum in a sub-space is also a global optimum in
the entire space

30 © J. Fürnkranz

Summary of Rule Learning HeuristicsSummary of Rule Learning Heuristics
● There are two basic types of (linear) heuristics.

 precision: rotation around the origin
 cost metrics: parallel lines

● They have different goals
 precision picks the steepest continuation for the curve for

unkown costs
 linear cost metrics pick the best point according to known or

assumed costs

● The m-heuristic may be interpreted as a trade-off
between the two prototypes
 parameter c chooses the cost model
 parameter m chooses the “degree of parallelism”

31 © J. Fürnkranz

Foil GainFoil Gain

 (c is the precision of the parent clause)

h foil=−plog 2 c−log2
p

pn


32 © J. Fürnkranz

Overfitting Overfitting

● Overfitting
 Given

● a fairly general model class
● enough degrees of freedom

 you can always find a model that explains the data
● even if the data contains error (noise in the data)
● in rule learning: each example is a rule

● Such concepts do not generalize well!
 → Pruning

33 © J. Fürnkranz

Overfitting - IllustrationOverfitting - Illustration

Prediction for
this value of x?

Polynomial degree 1
(linear function)

 Polynomial degree 4
(n-1 degrees can always fit n points)










□ here

□ or here ?

34 © J. Fürnkranz

OverfittingOverfitting

● Eine perfekte Anpassung an die gegebenen Daten ist nicht
immer sinnvoll
 Daten könnten fehlerhaft sein

● z.B. zufälliges Rauschen (Noise)
 Die Klasse der gewählten Funktionen könnte nicht geeignet sein

● eine perfekte Anpassung an die Trainingsdaten ist oft gar nicht
möglich

● Daher ist es oft günstig, die Daten nur ungefähr anzupassen
 bei Kurven:

● nicht alle Punkte müssen auf der Kurve liegen
 beim Konzept-Lernen:

● nicht alle positiven Beispiele müssen von der Theorie abgedeckt
werden

● einige negativen Beispiele dürfen von der Theorie abgedeckt werden

35 © J. Fürnkranz

OverfittingOverfitting

 beim Konzept-Lernen:
 nicht alle positiven Beispiele müssen von der Theorie

abgedeckt werden
 einige negativen Beispiele dürfen von der Theorie

abgedeckt werden

36 © J. Fürnkranz

Komplexität von KonzeptenKomplexität von Konzepten

● Je weniger komplex ein Konzept ist, desto geringer ist die
Gefahr, daß es sich zu sehr den Daten anpaßt
 Für ein Polynom n-ten Grades kann man n+1 Parameter

wählen, um die Funktion an alle Punkte anzupassen
● Daher wird beim Lernen darauf geachtet, die Größe der

Konzepte klein zu halten
 eine kurze Regel, die viele positive Beispiele erklärt (aber

eventuell auch einige negative) ist oft besser als eine lange
Regel, die nur einige wenige positive Beispiele erklärt.

● Pruning: komplexe Regeln werden zurechtgestutzt
 Pre-Pruning:

● während des Lernens
 Post-Pruning:

● nach dem Lernen

37 © J. Fürnkranz

Pre-Pruning Pre-Pruning

● keep a theory simple while it is
learned

● decide when to stop adding
conditions to a rule
(relax consistency
constraint)

● decide when to stop adding
rules to a theory
(relax completeness
constraint)

 efficient but not accurate

38 © J. Fürnkranz

Pre-Pruning HeuristicsPre-Pruning Heuristics

● Threshold
 require a certain minimum value of the search heuristic
 e.g.: Precision > 0.8.

● Foil's Minimum Description Length Criterion
 the length of the theory plus the exceptions (misclassified

examples) must be shorter than the length of the examples by
themselves

 lengths are measured in bits (information content)
● CN2's Significance Test

 tests whether the distribution of the examples covered by a
rule deviates significantly from the distribution of the examples
in the entire training set

 if not, discard the rule

39 © J. Fürnkranz

Minimum Coverage FilteringMinimum Coverage Filtering

 positive examples (support) all examples (coverage)

filter rules that do not cover a minimum number of

40 © J. Fürnkranz

Support/Confidence FilteringSupport/Confidence Filtering

● filter rules that
 cover not enough positive

examples (p < suppmin)
 are not precise enough

(hprec < confmin)
● effects:

 all but a region around
(0,P) is filtered

● we will return to support/confidence with association rule
learning algorithms!

41 © J. Fürnkranz

CN2's likelihood ratio statisticsCN2's likelihood ratio statistics

● basic idea:
measure significant deviation
from prior probability
distribution

● effects:
 non-linear isometrics

● similar to m-estimate
● but prefer rules near the

edges
 distributed χ2

 significance levels 95%
(dark) and 99% (light grey)

hLRS=2 p log p
e p

n log n
en


e p= pn P
PN

;en= pn N
PN

42 © J. Fürnkranz

Fossil's CorrelationFossil's Correlation

● basic idea:
measure correlation coefficient
of predictions with target

● effects:
 non-linear isometrics
 in comparison to WRA

● prefers rules near the
edges

● steepness of connection
of intersections with
edges increases

 equivalent to χ2

 grey area = cutoff of 0.3

hCorr=
p N−n−P− pn

PN  pnP− pN−n

43 © J. Fürnkranz

MDL-Pruning in FoilMDL-Pruning in Foil

● Basiert auf dem Minimum Description Length-Prinzip (MDL)
 ist es effektiver die Regel oder die Beispiele zu übertragen?

● der Informationsgehalt einer Regel wird berechnet (in Bits)
● der Informationsgehalt aller Beispiele wird berechnet (in Bits)
● wenn die Regel mehr Bits braucht als die Beispiele dann wird die

Regel nicht weiter verfeinert
 Details → (Quinlan, 1990)

● Funkioniert nicht perfekt
 bei nicht perfekten Regeln müßte man noch die Kosten für die

Ausnahmen kodieren
● die müssen zusätzlich zur Regel übertragen werden

 eine informations-theoretisch perfekte Kodierung einer Regel ist
praktisch nicht möglich

44 © J. Fürnkranz

Foil's MDL-based Stopping CriterionFoil's MDL-based Stopping Criterion

● basic idea:
compare the encoding length
of the rule l(r) to the encoding
length hMDL of the example.
 we assume l(r) = c constant

● effects:
 equivalent to filtering on

support

hMDL=log2PN  log2PN
p 

45 © J. Fürnkranz

Anomaly of Foil's Stopping criterionAnomaly of Foil's Stopping criterion

● We have tacitly assumed N > P...

● hMDL assumes its maximum at p = (P+N)/2
 thus, for P > N, the maximum is not on top!

● there may be rules
● of equal length
● covering the same number of negative

examples
● the rule covering fewer positive examples is

acceptable
● but the rule covering more positive

examples is not!

46 © J. Fürnkranz

How Foil WorksHow Foil Works

 filtering of rules with no
information gain
● after each refinement step,

the region of acceptable
rules is adjusted as in
precision/confidence
filtering

 filtering of rules that
exceed the rule length
● after each refinement step,

the region of acceptable
rules is adjusted as in
support filtering

→ Foil (almost) implements Support/Confidence Filtering

47 © J. Fürnkranz

Pre-Pruning SystemsPre-Pruning Systems

● Foil:
 Search heuristic: Foil Gain
 Pruning: MDL-Based

● CN2:
 Search heuristic: Laplace/m-heuristic
 Pruning: Likelihood Ratio

● Fossil:
 Search heuristic: Correlation
 Pruning: Threshold

48 © J. Fürnkranz

Post PruningPost Pruning

49 © J. Fürnkranz

Reduced Error Pruning Reduced Error Pruning

● basic idea
 optimize the accuracy of a rule set on a separate pruning set

1.split training data into a growing and a pruning set

2.learn a complete and consistent rule set covering all positive
examples and no negative examples

3.as long as the error on the pruning set does not increase

● delete condition or rule that results in the largest reduction of
error on the pruning set

4.return the remaining rules

● accurate but not efficient
 O(n4)

51 © J. Fürnkranz

Incremental Incremental
Reduced Error PruningReduced Error Pruning

● Prune each rule right after it is learned:

1. split training data into a growing and a pruning set

2. learn a consistent rule covering only positive examples

3. delete conditions as long as the error on the pruning set does
not increase

4. if the rule is better than the default rule, add it to the rule set
and goto 1.

● More accurate, much more efficient
 because it does not learn overly complex intermediate concept

 REP: O(n4) I-REP: O(n log2n)

● Subsequently used in the RIPPER (JRip in Weka) rule
learner (Cohen, 1995)

53 © J. Fürnkranz

Multi-class problems Multi-class problems

 GOAL: discriminate c
classes from each other

 PROBLEM: many learning
algorithms are only suitable
for binary (2-class)
problems

 SOLUTION:
"Class binarization":
Transform an c-class
problem into a series of 2-
class problems

54 © J. Fürnkranz

Class Binarization for Rule LearningClass Binarization for Rule Learning

● None
 class of a rule is defined by the majority of covered

examples
 decision lists, CN2 (Clark & Niblett 1989)

● One-against-all / unordered
 foreach class c: label its examples positive, all others

negative
 CN2 (Clark & Boswell 1991), Ripper -a unordered

● Ordered
 sort classes - learn first against rest - remove first - repeat
 Ripper (Cohen 1995)

● Error Correcting Output Codes (Dietterich & Bakiri, 1995)
 generalized by (Allwein, Schapire, & Singer, JMLR 2000)

55 © J. Fürnkranz

One-against-all binarizationOne-against-all binarization

Treat each class as a separate concept:
 c binary problems, one for each class
 label examples of one class positive, all others negative

56 © J. Fürnkranz

PredictionPrediction
● It can happen that multiple rules fire for a class

 no problem for concept learning (all rules say +)
 but problematic for multi-class learning

● because each rule may predict a different class
 Typical solution:

● use rule with the highest precision for prediction
 more complex approaches are possible: e.g., voting

● It can happen that no rule fires on a class
 no problem for concept learning (the example is then -)
 but problematic for multi-class learning

● because it remains unclear which class to select
 Typical solution: predict the largest class
 more complex approaches:

● e.g., rule stretching: find the most similar rule to an example

57 © J. Fürnkranz

Round Robin LearningRound Robin Learning
(aka (aka Pairwise ClassificationPairwise Classification))

 c(c-1)/2 problems
 each class against each

other class

✔ smaller training sets
✔ simpler decision

boundaries
✔ larger margins

58 © J. Fürnkranz

PredictionPrediction

● Voting:
 as in a sports tournament:

● each class is a player
● each player plays each other player, i.e., for each pair of classes

we get a prediction which class „wins“
● the winner receives a point
● the class with the most points is predicted

 tie breaks, e.g., in favor of larger classes
● Weighted voting:

 the vote of each theory is proportional to its own estimate of
its correctness

 e.g., proportional to proportion of examples of the predicted
class covered by the rule that makes the prediction

59 © J. Fürnkranz

AccuracyAccuracy

● error rates on 20
datasets with 4 or
more classes
 10 significantly

better (p > 0.99,
McNemar)

 2 significantly
better (p > 0.95)

 8 equal
 never

(significantly)
worse

pairwiseone-vs-all

60 © J. Fürnkranz

Yes, but isn't that expensive?Yes, but isn't that expensive?

YES:
We have O(c2) learning problems...

but NO:
the total training effort is smaller than for the c learning
problems in the one-against-all setting!

● Fine Print :
 single round robin

● more rounds add a constant factor
 training effort only

● test-time and memory are still quadratic
● BUT: theories to test may be simpler

61 © J. Fürnkranz

Advantages of Round RobinAdvantages of Round Robin
● Accuracy

 never lost against one-
against-all

 often significantly more
accurate

● Efficiency
 proven to be faster than,

e.g., one-against-all,
ECOC, boosting...

 higher gains for slower
base algorithms

● Understandability
 simpler boundaries/concepts
 similar to pairwise ranking as

recommended by Pyle (1999)
● Example Size Reduction

 each binary task is
considerably smaller than
original data

 subtasks might fit into
memory where entire task
does not

● Easily parallelizable
 each task is independent of

all other tasks

62 © J. Fürnkranz

A Pathology forA Pathology for
Top-Down LearningTop-Down Learning

● Parity problems (e.g. XOR)
 r relevant binary attributes
 s irrelevant binary attributes
 each of the n = r + s attributes has values 0/1 with probability ½
 an example is positive if the number of 1's in the relevant

attributes is even, negative otherwise
 Problem for top-down learning:

● by construction, each condition of the form a
i
 = 0 or a

i
 = 1

covers approximately 50% positive and 50% negative
examples

● irrespective of whether a
i
 is a relevant or an irrelevant attribute

➔ top-down hill-climbing cannot learn this type of concept
 Typical recommendation:

● use bottom-up learning for such problems

63 © J. Fürnkranz

Bottom-Up Approach: Motivation Bottom-Up Approach: Motivation

IF T=hot AND H=high AND O=sunny AND W=false THEN no
IF T=hot AND H=high AND O=sunny AND W=true THEN no
IF T=hot AND H=high AND O=overcast AND W=false THEN yes
IF T=cool AND H=normal AND O=rain AND W=false THEN yes
IF T=cool AND H=normal AND O=overcast AND W=true THEN yes
IF T=mild AND H=high AND O=sunny AND W=false THEN no
IF T=cool AND H=normal AND O=sunny AND W=false THEN yes
IF T=mild AND H=normal AND O=rain AND W=false THEN yes
IF T=mild AND H=normal AND O=sunny AND W=true THEN yes
IF T=mild AND H=high AND O=overcast AND W=true THEN yes
IF T=hot AND H=normal AND O=overcast AND W=false THEN yes
IF T=mild AND H=high AND O=rain AND W=true THEN no
IF T=cool AND H=normal AND O=rain AND W=true THEN no
IF T=mild AND H=high AND O=rain AND W=false THEN yes

64 © J. Fürnkranz

Bottom-Up Hill-ClimbingBottom-Up Hill-Climbing

 Simple inversion of top-down hill-climbing

 A rule is successively generalized

1. Start with an empty rule R that covers all examples

2. Evaluate all possible ways to add a condition to R

3. Choose the best one

4. If R is satisfactory, return it

5. Else goto 2.

a fully specialized a single example

delete

65 © J. Fürnkranz

A Pathology of Bottom-Up A Pathology of Bottom-Up
Hill-ClimbingHill-Climbing

att1 att2 att3

+ 1 1 1

+ 1 0 0

− 0 1 0

− 0 0 1

 Target concept att1 = 1 not (reliably) learnable with
bottom-up hill-climbing

 because no generalization of a seed example will increase
coverage

 Hence you either stop or make an arbitrary choice (e.g.,
delete attribute 1)

66 © J. Fürnkranz

Bottom-Up Rule Learning AlgorithmsBottom-Up Rule Learning Algorithms

● AQ-type:
 select a seed example and search the space of its

generalizations
 BUT: search this space top-down
 Examples: AQ (Michalski 1969), Progol (Muggleton 1995)

● based on least general generalizations (lggs)
 greedy bottom-up hill-climbing
 BUT: expensive generalization operator

(lgg/rlgg of pairs of seed examples)
 Examples: Golem (Muggleton & Feng 1990), DLG (Webb 1992), RISE

(Domingos 1995)
● Incremental Pruning of Rules:

 greedy bottom-up hill-climbing via deleting conditions
 BUT: start at point previously reached via top-down specialization
 Examples: I-REP (Fürnkranz & Widmer 1994), Ripper (Cohen 1995)

