Learning of Rule Sets

® |ntroduction
= | earning Rule Sets
= Terminology
= Coverage Spaces
¢ Separate-and-Conquer Rule Learning
= Covering algorithm
= Top-Down Hill-Climbing
= Rule Evaluation Heuristics
= QOverfitting and Pruning
= Multi-Class Problems
= Bottom-Up Hill-Climbing
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Learning Rule Sets

® many datasets cannot be solved with a single rule
= not even the simple weather dataset
= they need a rule set for formulating a target theory
¢ finding a computable generality relation for rule sets is not
trivial
= adding a condition to a rule specializes the theory
= adding a new rule to a theory generalizes the theory
® practical algorithms use different approaches
= covering or separate-and-conquer algorithms
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Rules vs. Trees

® Rule sets are at least as expressive as decision trees

= a decision tree can be viewed as a set of non-overlapping
rules

= typically learned via divide-and-conquer algorithms
(recursive partitioning)

® Many concepts have a shorter description as a rule set

= exceptions: if one or more attributes are relevant for the
classification of all examples (e.g., parity)
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hot

hot
cool
cool
mild
cool
mild
mild
mild

hot
mild
cool
mild

® Task:

A sample task

sunny
sunny
overcast
rain
overcast
sunny
sunny
rain
sunny
overcast
overcast
rain
rain
rain

high
high
high
normal
normal
high
normal
normal
normal
high
normal
high
normal
high

false
true
false
false
true
false
false
false
true
true
false
true
true
false

= Find a rule set that correctly predicts the dependent

variable from the observed variables
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A Simple Solution

IF
IF
IF
IF
IF
IF
IF
IF

T=hot

T=cool
T=cool
T=cool
T=mild
T=mild
T=mild
T=hot

AND
AND
AND
AND
AND
AND
AND
AND

H=high

H=normal
H=normal
H=normal
H=normal

H=normal
H=high
H=normal
H=high

AND
AND
AND
AND
AND
AND
AND
AND
AND

O=overcast AND
O=rain AND
O=overcast AND
O=sunny AND
O=rain AND
O=sunny AND
O=overcast AND
O=overcast AND
O=rain AND

W=false
W=false
W=true
W=false
W=false
W=true
W=true
W=false
W=false

THEN
THEN
THEN
THEN
THEN
THEN
THEN
THEN

yes
yes
yes
yes
yes
yes
yes
yes

® The solution is
= a set of rules
= that is complete and consistent on the training examples
— it must be part of the version space

® but it does not generalize to new examples!
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The Need for a Bias

rule sets can be generalized by

= generalizing an existing rule (as usual)
= introducing a new rule (this is new)

a minimal generalization could be
= introduce a new rule that covers only the new example

Thus:

= The solution on the previous slide will be found as a result of

the FindS algorithm

= FindG (or Batch-FindG) are less likely to find such a bad

solution because they prefer general theories

But in principle this solution is part of the hypothesis space

and also of the version space
= we need a search bias to prevent finding this solution!
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A Better Solution

IF Outlook = overcast THEN vyes
IF Humidity = normal AND Outlook = sunny THEN  yes
IF Outlook = rainy  AND Windy = false THEN yes
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Recap: Batch-Find

® Abstract algorithm for learning a single rule:

1. Start with an empty theory T and training set £
2. Learn a single (consistent) rule R from EF and add itto T
3. return T

® Problem:

= the basic assumption is that the found rules are complete,
l.e., they cover all positive examples

= What if they don't?
® Simple solution:

= |[f we have a rule that covers part of the positive examples:
= add some more rules that cover the remaining examples
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Separate-and-Conquer
Rule Learning

m | earn a set of rules, one by one

1. Start with an empty theory 7 and training set £

2. Learn a single (consistent) rule R from Eand add itto T
3. If T is satisfactory (complete), return T

4. Else:

® Separate: Remove examples explained by R from E

® Conquer: If E'Is non-empty, goto 2.

® One of the oldest family of learning algorithms
= goes back AQ (Michalski, 60s)
= FRINGE, PRISM and CNZ2: relation to decision trees (80s)
= popularized in ILP (FOIL and PROGOL, 90s)
= RIPPER brought in good noise-handling
¢ Different learners differ in how they find a single rule
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Separate-and-Conquer Rule Learning

(i) Original Data

ORI
.-;__:I:____—:l ety
L R2
LT
(iv) Step 3

Quelle fiir Grafiken: http://www.cl.uni-heidelberg.de/kurs/ws03/einfki/KI1-2004-01-13.pdf
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Terminology

® training examples
e P: total number of positive examples
® N: total number of negative examples
® examples covered by the rule (predicted positive)

o p: positive examples covered by the rule
® false positives n: negative examples covered by the rule

® examples not covered the rule (predicted negative)

® false negatives P-p: positive examples not covered by the rule
o N-n: negative examples not covered by the rule

predicted + predicted -

p (true positives) P-p (false negatives)

n (false positives) N-n (true negatives)
ptn P+N— (p+n)

11 © J. Furnkranz



Coverage Spaces

® good tools for visualizing properties of covering algorithms
® each point is a theory covering p positive and » negative examples

: universal theory:
all positive and 0 4 | allexamples

no negative / are covered
examples
are covered
&
c - default distribution:
[na) . .
. = _.-" +
iso-accuracy: > p=n." Orgﬁil\?éa;nng/]g/)P]-\lf-)N
cover same = > pne ative ex rrf I )
amount of 9 g exampies
positive B
and negative :
L .
examples opposite theory:
all negative and
empty theory: no positive
no examples ” < examples
are covered 0 N are covered

covered negative examples
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® Janguage bias:

+ which type of
conditions are allowed
(static)

+ which combinations of
condictions are
allowed (dynamic)

search bias:
search heuristics

search algorithm
(greedy, stochastic,
exhaustive)

search strategy (top-
down, bottom-up)

® overfitting avoidance
bias:
¢ pre-pruning
(stopping criteria)
¢ post-pruning



Covering Strategy

® Covering or Separate-and-Conquer
rule learning learning algorithms
learn one rule at a time L R

® This corresponds to a path in
coverage space:

The empty theory R, (no rules) R
corresponds to (0,0)

Adding one rule never

decreases p or n because
adding a rule covers more
examples (generalization)

The universal theory R+ (all ) N
examples are positive)
corresponds to (N,P)
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Top-Down Hill-Climbing

® Top-Down: A rule is successively specialized

1. Start with an empty rule R that covers all examples
2. Evaluate all possible ways to add a condition to R
3. Choose the best one (according to some heuristic)
4. If R is satisfactory, return it

5. Else goto 2.

® Almost all greedy sé&c rule learning systems use this
strategy
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Top-Down Hill-Climbing

® Successively extends a rule by adding conditions

o

- True

® This corresponds to a path in b p-a
—ab.
coverage space: i
= The rule p:-true covers all
examples (universal theory) Prabe

= Adding a condition never
increases p or n (specialization)

= Therule p:-false covers
no examples (empty theory)

o ¥P- false

0 M

® which conditions are selected depends on a heuristic function that
estimates the quality of the rule
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Rule Learning Heuristics

¢ Adding a rule should

= increase the number of covered negative examples as little as

possible (do not decrease )
= increase the number of covered positive examples as much
as possible (increase )

® An evaluation heuristic should therefore trade off these two
extremes

= Example: p, =—Pt1
P p+n+2
® grows with p—©
® grows with n—(
= Note: Precision is not a good heuristic. Why?
=D

Prec

p+n
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Example

[Condition p n Precision Laplace p-n
Hot 2 2 0.5000 0.5000 0
Temperature = Mild 3 1 0.7500 0.6667 2
Cold 4 2 0.6667 0.6250 2
Sunny 2 3 0.4000 0.4286 -1
[Outlook = Overcast 4 0 1.0000 0.8333 4
Rain 3 2 0.6000 0.5714 1
Humidity = High 3 4 0.4286 0.4444 -1
Normal 6 1 0.8571 0.7778 5
IWindy = True 3 3 0.5000 0.5000 0
False 6 2 0.7500 0.7000 4

® Heuristics Precision and Laplace

= add the condition Outlook= Overcast to the (empty) rule

= stop and try to learn the next rule

® Heuristic Accuracy / p-n
= adds Humidity = Normal

= continue to refine the rule (until no covered negative)

18
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Isometrics in Coverage Space

® |[sometrics are lines that connect points for which a
function in p and n has equal values

= -n

n

p

s Examples: Isometrics for heuristics 7 =p and /4

e | — i — o — o — o i o ]

— " — — — — — — — — —— — i o i o

— e — i ¢ — ¢ i o ]

— ¢ — — — — — — — — — — o o
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Precision (Confidence)

® pasic idea:
percentage of positive
examples among covered
examples

® cffects:

= rotation around origin
(0,0)

= all rules with same
angle equivalent

= |n particular, all rules
on P/N axes are
equivalent

Prec

—
e
—
—
—
—
——
——

——
—
p———
—
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Entropy and Gini Index

h., =— LIO P + " lo L

Ent <p+n g2p+n Dn g2p+n)

2 2

h ini=1_ P - " = £r

G (p+n) (p+n (ptn)

m effects: N
|i|| |: ; fj ; f / f;ff
= entropy and Gini index are |lijiji /) /7

equivalent

= |ike precision, isometrics
rotate around (0,0)

= |sometrics are symmetric
around 45° line

= arule that only covers
negative examples is as
good as a rule that only
covers positives




Accuracy

_p+(N=-n)

Acc

® pasic idea:
percentage of correct
classifications
(covered positives plus
uncovered negatives)

® cffects:

= [sometrics are parallel
to 45° line

= covering one positive
example is as good as
not covering one
negative example

P+ N

o
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Weighted Relative Accuracy

)~

pP_n
P N

ho= ptn, p P
“ P+N p+n P+N
® basic idea: 0
normalize accuracy with o
the class distribution 7
e effects: 7
= isometrics are parallel |~ .
to diagonal e
= covering x% of the e
positive examples is as //’___..
good as not covering g ite
x% of the negative T
examples o
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Linear Cost Metric

® Accuracy and weighted relative accuracy are only two
special cases of the general case with linear costs:

= costs ¢ mean that covering 1 positive example is as good
as not covering c/(1-c) negative examples

measure

Y5 accuracy
\Wiz23\ ) welghted relative accuracy
excluding negatives at all costs
covering positives at all costs

= The general formis then 4, ,=cp—(1—c)n
o the isometrics of /2 __, are parallel lines with slope (1-¢)/c

cost
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Laplace-Estimate

_ p+1 _ p+l
hL“p_(p+1)+(n+1) C p4n+2

® pasic idea:
precision, but count
coverage for positive
and negative examples
starting with 1 instead
of 0

® cffects:
= origin at (-1,-1)
= different values on
p=0or n=0 axes

= not equivalent to
precision

covered positive examples

o

covered negative examples
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m-Estimate

® basic idea: P P
Initialize the counts with m P+ N
examples in total, distributed ~ /n= 2 N Tntm
according to the prior (ptm—o——)+(n+tm———)
distribution P/(P+N) of
p and n. 0 N % 7 P

PY effe CtS.' ;f ;_ ;‘f _,-’ | P
= origin shifts to P ]
(-mP/(P+N),-mN/(P+N)) A P |

= With increasing m, the ; f ja s e -
lines become more and (i o et PO s S e oo
more parallel R s [ s S R

= can be re-interpreted as a

trade-off between WRA

and precision/confidence == D N
-n_m




Generalized m-Estimate

® One can re-interpret the m-Estimate:

= Re-interpret ¢ = N/(P+N) as a cost factor like in the general
cost metric

= Re-interpret m as a trade-off between precision and cost-
metric

® m = 0: precision (independent of cost factor)

® m—oo; the isometrics converge towards the parallel isometrics of
the cost metric

® Thus, the generalized m-Estimate may be viewed as a
means of trading off between precision and the cost metric
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® Precision tries to pick the steepest continuation of the curve

Optimizing Precision

® tries to maximize the area under this curve
(— AUC: Area Under the ROC Curve)

® no particular angle of isometrics is preferred, i.e. no preference for
a certain cost model

o

r e ]
! ! _("( ._f"f - f‘f s
; ,I' i - 'l - H__F__,_,..,-F -
."I ) v - Fe .'f S __.—H"'__"
A It = e
! s A
"Ilf'r 'r-'"f’ _,_,_..,--""'_;'VLFF_‘-"'-- -
2 {.—;"_'f_-ﬂ - /.-"'-' -::i:—o-—"'
Fal ——
||" .l"/r T _,-—""'_F_F --__.r-'
{ ¥ P e L
i - L - -
L o £ = e
- - /,.“"I‘ R P
./fr - b= ~
L L -
R JEETT -
If - e
' .
i ST
- .
.".III s : .-v"'-'f-
! .-"/ -
¥ A ‘___-f; _,_.-'-"_-'_
/ ; o S S SR SOl bl
.'I ’ e
i ,r/ S e _,—r—"‘"'#
{ T =T
- =
l.l'|l r i -'"',- _,_,..-'"'-'_
I _.-"f -
! T =T
fe ™ =
|
|

© J. Furnkranz



Optimizing Accuracy

® Accuracy assumes the same costs in all subspaces

® alocal optimum in a sub-space is also a global optimum in
the entire space
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Summary of Rule Learning Heuristics

® There are two basic types of (linear) heuristics.
= precision: rotation around the origin
= cost metrics: parallel lines

®* They have different goals

= precision picks the steepest continuation for the curve for
unkown costs

= |inear cost metrics pick the best point according to known or
assumed costs

® The m-heuristic may be interpreted as a trade-off
between the two prototypes

= parameter ¢ chooses the cost model
= parameter m chooses the “degree of parallelism”
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Foil Gain

PI(P+N)

c=

)

(c is the precision of the parent clause)

P
ptn

hfoil= —p(log,c—log,

c=10"-6

c=1/2

© J. Furnkranz
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Overfitting

¢ Overfitting
= Given

® a fairly general model class
® enough degrees of freedom

= you can always find a model that explains the data

® even if the data contains error (noise in the data)
® in rule learning: each example is a rule

® Such concepts do not generalize well!
= — Pruning
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Overfitting - lllustration

Polynomial degree 1 | < here

(linear function)

Prediction for

this value of x?
Polynomial degree 4 | | | | a

(n-1 degrees can always fit n points)
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Overfitting

® Eine perfekte Anpassung an die gegebenen Daten ist nicht
immer sinnvoll

= Daten konnten fehlerhaft sein
e z.B. zufalliges Rauschen (Noise)
= Die Klasse der gewahlten Funktionen konnte nicht geeignet sein

® eine perfekte Anpassung an die Trainingsdaten ist oft gar nicht
moglich

® Daher ist es oft gunstig, die Daten nur ungefahr anzupassen
= bei Kurven:

® nicht alle Punkte mussen auf der Kurve liegen
= beim Konzept-Lernen:

® nicht alle positiven Beispiele mussen von der Theorie abgedeckt
werden

® einige negativen Beispiele durfen von der Theorie abgedeckt werden
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Overfitting

beim Konzept-Lernen:

nicht alle positiven Beispiele mussen von der Theorie

abgedeckt werden

einige negativen Beispiele durfen von der Theorie

abgedeckt werden

35
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Komplexitat von Konzepten

® Je weniger komplex ein Konzept ist, desto geringer ist die
Gefahr, dal} es sich zu sehr den Daten anpalit

= FUr ein Polynom n-ten Grades kann man n+1 Parameter
wahlen, um die Funktion an alle Punkte anzupassen

® Daher wird beim Lernen darauf geachtet, die Grol3e der
Konzepte klein zu halten

= eine kurze Regel, die viele positive Beispiele erklart (aber
eventuell auch einige negative) ist oft besser als eine lange
Regel, die nur einige wenige positive Beispiele erklart.

® Pruning: komplexe Regeln werden zurechtgestutzt
= Pre-Pruning:
¢ wahrend des Lernens
= Post-Pruning:
® nach dem Lernen
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Pre-Pruning

® keep a theory simple while it is
learned
® decide when to stop adding
conditions to a rule

(relax consistency CO)—( ) () ( )
constraint) o :

® decide when to stop adding I );
rules to a theory C-—C

(relax completeness
constraint)

= efficient but not accurate

i . Literals G Post—F runing Decisiohs i ... Pre—Pruning Decisichs
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Pre-Pruning Heuristics

® Threshold

= require a certain minimum value of the search heuristic
= e.g.: Precision > 0.8.
® Foil's Minimum Description Length Criterion

= the length of the theory plus the exceptions (misclassified
examples) must be shorter than the length of the examples by
themselves

= lengths are measured in bits (information content)
® CNZ2's Significance Test

= tests whether the distribution of the examples covered by a
rule deviates significantly from the distribution of the examples
In the entire training set

= if not, discard the rule
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Minimum Coverage Filtering

filter rules that do not cover a minimum number of

positive examples ( ) all examples ( )

[ o — — — — — — — — — — — — — — — — — — — — — — — ]

[ o —— — — — — — — — — — — — — — — — — e — — — —

[ o — —— — — — — — — — — — — — — — — — — — — — —
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Support/Confidence Filtering

® filter rules that

= cover not enough positive
examples (p < suppin)
= are not precise enough
(hprec < Confmin)
® effects:

= all but a region around
(0,P) is filtered

e we will return to support/confidence with association rule
learning algorithms!
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CNZ2's likelihood ratio statistics

4

n
hLRS=2<ploge_ +I’llOg e—)

P n e, =(p+n)———e,=(p+n)

® pasic idea:
measure significant deviation *
from prior probability
distribution

® cffects:

= non-linear isometrics
® similar to m-estimate
® but prefer rules near the
edges
= distributed ¥’

= significance levels 95%
(dark) and 99% (light grey)
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Fossil's Correlation

h — p(N-ﬂ)-(P—p)l’l
o JPN(p+n)(P—p+N—n)

® basic idea:
measure correlation coefficient
of predictions with target

® cffects:

= non-linear isometrics
= in comparison to WRA

® prefers rules near the
edges

® steepness of connection
of intersections with
edges increases

= equivalent to ¥
= grey area = cutoff of 0.3

42
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MDL-Pruning in Foll

¢ Basiert auf dem Minimum Description Length-Prinzip (MDL)

= st es effektiver die Regel oder die Beispiele zu Ubertragen?
® der Informationsgehalt einer Regel wird berechnet (in Bits)
® der Informationsgehalt aller Beispiele wird berechnet (in Bits)

® wenn die Regel mehr Bits braucht als die Beispiele dann wird die
Regel nicht weiter verfeinert

= Details — (Quinlan, 1990)
® Funkioniert nicht perfekt

= bei nicht perfekten Regeln mufdte man noch die Kosten fur die
Ausnahmen kodieren

® die mussen zusatzlich zur Regel Ubertragen werden

= eine informations-theoretisch perfekte Kodierung einer Regel ist
praktisch nicht moglich
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Foil's MDL-based Stopping Criterion

hypr =log, (P + N)+10g2(P+N)
p

® pasic idea:
compare the encoding length
of the rule /(r) to the encoding
length 7,5, of the example.

= we assume /(r) = c constant
¢ effects:

= equivalent to filtering on
support
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Anomaly of Foil's Stopping criterion

®* \We have tacitly assumed N > P...

® /iyp. @SSumes its maximum at p = (P+N)/2
= thus, for P > N, the maximum is not on top! _____;:_

| e

— — — — — —

® there may be rules

e of equal length

® covering the same number of negative
examples

* the rule covering fewer positive examples is
acceptable

* but the rule covering more positive
examples is not!
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How Foil Works

- Foil (almost) implements Support/Confidence Filtering

= filtering of rules with no
iInformation gain *

® after each refinement ste
the region of acceptable
rules is adjusted as in
precision/confidence
filtering

= filtering of rules that
exceed the rule length
® after each refinement ste
the region of acceptable

rules is adjusted as in 0 N
support filtering




Pre-Pruning Systems

e Foil:
s Search heuristic: Foil Gain
= Pruning: MDL-Based

e CN2:

= Search heuristic: Laplace/m-heuristic
= Pruning: Likelihood Ratio

® Fossil:

s Search heuristic: Correlation
= Pruning: Threshold
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Post Pruning

C=-—C0 OO O N /P
V-—N QO T O

(=—0C 0 D & (o=-—C1 O O
A -—F aa S - = 3 (3
Ay -—ay Sy == )

-—0 > )
I ©§

() ... Litetals S .. Post—Proni ng Decisions | ... Pte—Pruning Decisions
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Reduced Error Pruning

® basic idea
= optimize the accuracy of a rule set on a separate pruning set

1.split training data into a growing and a pruning set

2.learn a complete and consistent rule set covering all positive
examples and no negative examples

3.as long as the error on the pruning set does not increase

® delete condition or rule that results in the largest reduction of
error on the pruning set

4.return the remaining rules

® gccurate but not efficient
= O(n?)
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Incremental
Reduced Error Pruning

® Prune each rule right after it is learned:

1. split training data into a growing and a pruning set
2. learn a consistent rule covering only positive examples

3. delete conditions as long as the error on the pruning set does
not increase

4. 1f the rule i1s better than the default rule, add it to the rule set
and goto 1.

® More accurate, much more efficient
= pecause it does not learn overly complex intermediate concept
= REP: On") I-REP: O(n log’n)

® Subsequently used in the RIPPER (JRip in Weka) rule
learner (Cohen, 1995)
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Multi-class problems

GOAL: discriminate ¢
classes from each other

PROBLEM: many learning ox Lo,
algorithms are only suitable = x* x 1T,
for binary (2-class) x X ox LN a8
problems SE TN N
SOLUTION: S T N
"Class binarization": Ty 6% e
Transform an c-class T el o
problem into a series of 2- -~ P -
class problems P I

PO ]

# # '
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Class Binarization for Rule Learning

None

= class of a rule is defined by the majority of covered
examples

= decision lists, CN2 (Clark & Niblett 1989)
One-against-all / unordered

= foreach class c: label its examples positive, all others
negative

= CN2 (Clark & Boswell 1991), Ripper -a unordered
Ordered

= sort classes - learn first against rest - remove first - repeat

= Ripper (Cohen 1995)

Error Correcting Output Codes (Dietterich & Bakiri, 1995)
= generalized by (Allwein, Schapire, & Singer, JMLR 2000)

o4
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One-against-all binarization
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Treat each class as a separate concept:
= C binary problems, one for each class
= |label examples of one class positive, all others negative
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Prediction

® |t can happen that multiple rules fire for a class

= no problem for concept learning (all rules say +)
= but problematic for multi-class learning
® because each rule may predict a different class
= Typical solution:
® use rule with the highest precision for prediction
= more complex approaches are possible: e.g., voting

® |t can happen that no rule fires on a class

= no problem for concept learning (the example is then -)
= but problematic for multi-class learning
® because it remains unclear which class to select
= Typical solution: predict the largest class
= more complex approaches:
® e.g., rule stretching: find the most similar rule to an example
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Round Robin Learning
(aka Pairwise Classification)

= c(c-1)/2 problems L
= each class against each P
other class A T
v smaller training sets
v simpler decision
P : boundaries
# # .

LI v larger margins
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Prediction

® Voting:
= as in a sports tournament:

® each class is a player

® ecach player plays each other player, i.e., for each pair of classes
we get a prediction which class ,wins”

® the winner receives a point
® the class with the most points is predicted
m tie breaks, e.g., in favor of larger classes

® Weighted voting:

= the vote of each theory is proportional to its own estimate of
Its correctness

= e.g., proportional to proportion of examples of the predicted
class covered by the rule that makes the prediction
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Accuracy

one-vs-all pairwise
Ripper v

dataset unord. ordered R* ratio <
abalone 81.03 82.18 T299 0.888 ++
coverty pe 35.37 38.50 3320 0.862 ++
letter 15.22 15.75 7.8% (0.488 ++
sat 1425  17.05 1115 0.65§ ++
shuttle (.03 0oG 002 0375 =
vowel £4.94 33.25 3346 Lo004 =
Car 2.79 12,15  2.26 (0.186 ++
glass 35.51 3458 20.70 0743 ++
image 4.15 4.29 346 0808 +
Ir spectrometer | 64,22 61.39 53.11 0.865 ++
optical 7.79 948 374 0394 4+
page-blocks 2.8 338 276 (0.816 ++
solar flares (c) 15.91 15.91 15.77 0.8891 =
solar flares (m) 4.90) 247 a4 4821 =
sovbean 8.79 8.79 630 0717 ++
thyroid {hyper) 1.25 1.49 111 0748 +
thyroid (hypo) .64 a6 053 0855 =
thyroid (repl.) 1.17 098 101 1026 =
vehicle 28.25 30.38 20,08 0.957 =
yeast 44.00 42,39 41.78 (.986 =
average 21.80 2190 1852 0770
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® crror rates on 20
datasets with 4 or

more classes

10 significantly
better (p > 0.99,
McNemar)

2 significantly
better (p > 0.95)

8 equal

never
(significantly)
worse
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Yes, but isn't that expensive?

We have O(c®) learning problems...

but
the total training effort is smaller than for the c learning
problems in the one-against-all setting!

® Fine Print :
= single round robin
® more rounds add a constant factor
= training effort only
® test-time and memory are still quadratic
e BUT: theories to test may be simpler
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Advantages of Round Robin

® Accuracy ¢ Understandability
= never lost against one- = simpler boundaries/concepts
against-all = similar to pairwise ranking as
= often significantly more recommended by Pyle (1999)
accurate e Example Size Reduction
e Efficiency = each binary task is
= proven to be faster than, considerably smaller than
e.g., one-against-all, original data
ECOC, boosting... = subtasks might fit into
= higher gains for slower memory where entire task
base algorithms does not

® Easily parallelizable

= each task is independent of
all other tasks
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A Pathology for
Top-Down Learning

¢ Parity problems (e.g. XOR)
= 1 relevant binary attributes
= sirrelevant binary attributes
= each of the n=r + sattributes has values 0/1 with probability %2

= an example is positive if the number of 1's in the relevant
attributes is even, negative otherwise

Problem for top-down learning:
by construction, each condition of the forma =0ora =1
covers approximately 50% positive and 50% negative
examples
Irrespective of whether a is a relevant or an irrelevant attribute

= top-down hill-climbing cannot learn this type of concept
Typical recommendation:

use bottom-up learning for such problems
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Bottom-Up Approach: Motivation

IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF
IF

T=hot

T=hot

T=hot

T=cool
T=cool
T=mild
T=cool
T=mild
T=mild
T=mild
T=hot

T=mild
T=cool
T=mild

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

H=high
H=high
H=high
H=normal
H=normal
H=high
H=normal
H=normal
H=normal
H=high
H=normal
H=high
H=normal
H=high

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

O=sunny AND W-=false THEN
O=sunny AND W=true THEN
O=overcast AND W=false THEN
O=rain AND W=false THEN
O=overcast AND W-=true THEN
O=sunny AND W-=false THEN
O=sunny AND W=false THEN
O=rain AND W-=false THEN
O=sunny AND W=true THEN
O=overcast AND W-=true THEN
O=overcast AND W=false THEN
O=rain AND W-=true [THEN
O=rain AND W-=true [THEN
O=rain AND W=false THEN
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no
no

yes
yes
yes

no

yes
yes
yes
yes

yes
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Bottom-Up Hill-Climbing

m Simple inversion of top-down hill-climbing
m A rule is successively generalized

a fully specialized a single example

1. Start with an%mp%y rule R that covers allexamples

_ delete .
2. Evaluate all possible ways to a<d a condition to R

3. Choose the best one

4. If R is satisfactory, return it

5. Else goto 2.
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A Pathology of Bottom-Up
Hill-Climbing

| attl | a2 | a3
1 1 1
1 0 0
0 1 0
0 0 1

= Target concept att1 = 1 not (reliably) learnable with
bottom-up hill-climbing

= because no generalization of a seed example will increase
coverage

= Hence you either stop or make an arbitrary choice (e.g.,
delete attribute 1)
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Bottom-Up Rule Learning Algorithms

* AQ-type:
= select a seed example and search the space of its
generalizations
= BUT: search this space top-down
= Examples: AQ (Michalski 1969), Progol (Muggleton 1995)

® based on least general generalizations (lggs)
= greedy bottom-up hill-climbing
= BUT: expensive generalization operator
(Igg/rigg of pairs of seed examples)

= Examples: Golem (Muggleton & Feng 1990), DLG (Wwebb 1992), RISE
(Domingos 1995)

® |ncremental Pruning of Rules:
= greedy bottom-up hill-climbing via deleting conditions
= BUT: start at point previously reached via top-down specialization
= Examples: I-REP (Fiirnkranz & Widmer 1994), Ripper (Cohen 1995)
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