Seminar aus maschinellem Lernen - WS 06/07

Learning from Data Streams

Im Rahmen dieses Seminars werden wir neue Forschungsergebnisse aus dem Bereich maschinelles Lernen diskutieren. Ausgewählt werden neuere Publikationen aus den relevanten Journalen des Gebiets, insbesondere aus Machine Learning und dem Journal of Machine Learning Research, sowie aus den wichtigsten Konferenzen.

Der diesjährige Themenschwerpunkt liegt auf dem Lernen aus Datenströmen. Während die meisten konventionellen Lern-Algorithmen davon ausgehen, daß eine statische Menge von Tranings-Beispielen vorliegt, gibt es Anwendungsszenarien, in denen eine kontinuierlicher Datenstrom zu erwarten ist. Data Mining- und Lern-Methoden, die sich diesen Gegebenheiten anpassen, bilden den Schwerpunkt dieses Seminars.

Ankündigungen

Zeit und Ort

Tag Zeit Raum Beginn
Mittwoch 17:10-18:50 S202/A102 18.10.

Ablauf

Jede/r Student/in erhält einen oder mehrere Fachartikel zur Ausarbeitung, deren wesentliche Aspekte dann in einem ca. 30-minütigen Vortrag vorgestellt und im Anschluß von allen diskutiert werden sollen. Die Vorträge und/oder Folien können wahlweise auf Deutsch oder Englisch gehalten werden.

Vorkenntnisse

Da diese Artikel dem letzten Stand der Forschung entsprechen, wird einerseits erwartet, dass entsprechende Grundkenntnisse (und Interesse!) in maschinellem Lernen und Data Mining mitgebracht werden, dass man sich aber andererseits im Zuge der Vorbereitung auch selbständig mit der Thematik weiter vertraut macht und ggf. auch weiterführende bzw. grundlegende Literatur zu Rate zieht (bitte Quellen nennen).

Benotung

In die Gesamtnote fließen die Ausarbeitung des Vortrags (Folien), die Präsentation, die Beantwortung von Fragen zum Vortrag, sowie die aktive Teilnahme an der Diskussion bei den Vorträgen anderer ein. Eine schriftliche Ausarbeitung ist nicht notwendig.

Im Vordergrund der Gesamtbenotung steht jedoch die selbständige Auseinandersetzung mit dem Problem. Für eine sehr gute (1.x) Beurteilung muß klar sein, dass Sie die fraglichen Arbeiten verstanden haben und von den vorliegenden Papers abstrahieren können. Eine exakte Wiedergabe des Inhalts der Papiere führt nur zu einer Beurteilung mit 2.x, außerordentlich schwache Leistungen in einem der genannten Punkte zu 3.x oder schlechter.

Themen

A General bibliography on the subject can be found here.
A A A | Drucken | Impressum | Sitemap | Suche | Mobile Version
zum Seitenanfangzum Seitenanfang