Ensemble Methods

- Bias-Variance Trade-off
- Basic Idea of Ensembles
- Bagging
 - Basic algorithm
 - Bagging with Costs
- Randomization
 - Random Forests
- Boosting
- Stacking
- Error-Correcting Output Codes
Bias and Variance Decomposition

- **Bias:**
 - part of the error caused by bad model

- **Variance:**
 - part of the error caused by the data sample

- **Bias-Variance Trade-off:**
 - algorithms that can easily adapt to any given decision boundary are very sensitive to small variations in the data and vice versa
 - Models with a low bias often have a high variance
 - e.g., nearest neighbor, unpruned decision trees
 - Models with a low variance often have a high bias
 - e.g., decision stump, linear model
Ensemble Classifiers

- **IDEA:**
 - do not learn a *single* classifier but learn a *set of classifiers*
 - *combine the predictions* of multiple classifiers

- **MOTIVATION:**
 - *reduce variance*: results are less dependent on peculiarities of a single training set
 - *reduce bias*: a combination of multiple classifiers may learn a more expressive concept class than a single classifier

- **KEY STEP:**
 - formation of an ensemble of *diverse* classifiers from a single training set
Why do ensembles work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 - i.e., probability that a classifier makes a mistake does not depend on whether other classifiers made a mistake
 - **Note:** in practice they are not independent!
- Probability that the ensemble classifier makes a wrong prediction
 - The ensemble makes a wrong prediction if the majority of the classifiers makes a wrong prediction
 - The probability that 13 or more classifiers err is
 $$\sum_{i=13}^{25} \binom{25}{i} \varepsilon^i (1-\varepsilon)^{25-i} \approx 0.06 \ll \varepsilon$$

Based on a slide by Kumar et al.
Bagging: General Idea

- **Step 1:** Create Multiple Data Sets
 - Original Training data
 - D → D_1 → C_1
 - D_2 → C_2
 - D_{t-1} → C_{t-1}
 - D_t → C_t

- **Step 2:** Build Multiple Classifiers
 - C^*

- **Step 3:** Combine Classifiers

Taken from slides by Kumar et al.
Generate Bootstrap Samples

- Generate new training sets using sampling with replacement (bootstrap samples)

<table>
<thead>
<tr>
<th>Original Data</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagging (Round 1)</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Bagging (Round 2)</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Bagging (Round 3)</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

- some examples may appear in more than one set
- some examples will appear more than once in a set
- for each set, the probability that a given example appears in it is
 \[\Pr(x \in D_i) = 1 - \left(1 - \frac{1}{n}\right)^n \rightarrow 0.6322 \]
- i.e., less than 2/3 of the examples appear in one bootstrap sample

Based on a slide by Kumar et al.
Bagging Algorithm

1. for \(m = 1 \) to \(M \) // \(M \) ... number of iterations
 a) draw (with replacement) a bootstrap sample \(D_m \) of the data
 b) learn a classifier \(C_m \) from \(D_m \)

2. for each test example
 a) try all classifiers \(C_m \)
 b) predict the class that receives the highest number of votes

- variations are possible
 - e.g., size of subset, sampling w/o replacement, etc.
- many related variants
 - sampling of features, not instances
 - learn a set of classifiers with different algorithms
Bagged Trees

8.7 Bagging

from Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer Verlag 2001

weighted voting

Bayes

Bagged Trees

Original Tree

Test Error

0.35

0.30

0.25

0.20

Number of Bootstrap Samples

0

50

100

150

200
Bagging with costs

- Bagging unpruned decision trees known to produce good probability estimates
 - Where, instead of voting, the individual classifiers' probability estimates $\Pr_n(j|x)$ are averaged
 \[
 \Pr(j|x) = \frac{1}{n} \sum_{i=1}^{n} \Pr_n(j|x)
 \]
 - Note: this can also improve the error rate
- Can use this with minimum-expected cost approach for learning problems with costs
 - predict class c with $c = \arg \min_i \sum_j C(i|j) \Pr(j|x)$
- Problem: not interpretable
 - *MetaCost* re-labels training data using bagging with costs and then builds single tree (Domingos, 1997)
Randomization

- Randomize the learning algorithm instead of the input data
- Some algorithms already have a random component
 - eg. initial weights in neural net
- Most algorithms can be randomized, eg. greedy algorithms:
 - Pick from the N best options at random instead of always picking the best options
 - Eg.: test selection in decision trees or rule learning
- Can be combined with bagging

Based on a slide by Witten & Frank
Random Forests

- Combines bagging and random attribute subset selection:
 - Build the tree from a bootstrap sample
 - Instead of choosing the best split among all attributes, select the best split among a random subset of k attributes
 - is equal to bagging when k equals the number of attributes)
- There is a bias/variance tradeoff with k:
 - The smaller k, the greater the reduction of variance but also the higher the increase of bias

Based on a slide by Pierre Geurts
Boosting

- **Basic Idea:**
 - later classifiers focus on examples that were misclassified by earlier classifiers
 - weight the predictions of the classifiers with their error

- **Realization**
 - perform multiple iterations
 - each time using different example weights
 - weight update between iterations
 - increase the weight of incorrectly classified examples
 - this ensures that they will become more important in the next iterations
 (misclassification errors for these examples count more heavily)
 - combine results of all iterations
 - weighted by their respective error measures
Dealing with Weighted Examples

Two possibilities (→ cost-sensitive learning)

- directly
 - example e_i has weight w_i
 - number of examples n ⇒ total example weight $\sum_{i=1}^{n} w_i$

- via sampling
 - interpret the weights as probabilities
 - examples with larger weights are more likely to be sampled
 - assumptions
 - sampling with replacement
 - weights are well distributed in [0,1]
 - learning algorithm sensible to varying numbers of identical examples in training data
Boosting – Algorithm AdaBoost.M1

1. initialize example weights \(w_i = 1/N \) \((i = 1..N)\)
2. for \(m = 1 \) to \(M \) // \(M \)... number of iterations
 a) learn a classifier \(C_m \) using the current example weights
 b) compute a weighted error estimate
 \[
 err_m = \sum w_i \text{of all incorrectly classified } e_i \\
 \sum_{i=1}^{N} w_i = 1 \text{ because weights are normalized}
 \]
 c) compute a classifier weight
 \[
 \alpha_m = \frac{1}{2} \ln \left(\frac{1 - err_m}{err_m} \right)
 \]
 d) for all correctly classified examples \(e_i \): \(w_i \leftarrow w_i e^{-\alpha_m} \)
 e) for all incorrectly classified examples \(e_i \): \(w_i \leftarrow w_i e^{\alpha_m} \)
 f) normalize the weights \(w_i \) so that they sum to 1
3. for each test example
 a) try all classifiers \(C_m \)
 b) predict the class that receives the highest sum of weights \(\alpha_m \)
Illustration of the Weights

- **Classifier Weights** α_m
 - differences near 0 or 1 are emphasized

- **Example Weights**
 - multiplier for correct and incorrect examples, depending on error
Boosting – Error rate example

- boosting of decision stumps on simulated data

from Hastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer Verlag 2001
Toy Example

- An Applet demonstrating AdaBoost
 - http://www.cse.ucsd.edu/~yfreund/adaboost/

(taken from Verma & Thrun, Slides to CALD Course CMU 15-781, Machine Learning, Fall 2000)
Round 1

\[h_1 \]

\[\varepsilon_1 = 0.30 \]
\[\alpha_1 = 0.42 \]
Round 2

\[\varepsilon_2 = 0.21 \]
\[\alpha_2 = 0.65 \]
Round 3

\[
\epsilon_3 = 0.14 \\
\alpha_3 = 0.92
\]
Final Hypothesis

\[H_{\text{final}} = \text{sign} \left(0.42 + 0.65 + 0.92 \right) \]
Example

FIGURE 8.11. Data with two features and two classes, separated by a linear boundary. Left panel: decision boundary estimated from bagging the decision rule from a single split, axis-oriented classifier. Right panel: decision boundary from boosting the decision rule of the same classifier. The test error rates are 0.166, and 0.065 respectively. Boosting is described in Chapter 10.
Comparison Bagging/Boosting

- Bagging
 - noise-tolerant
 - produces better class probability estimates
 - not so accurate
 - statistical basis
 - related to random sampling

- Boosting
 - very susceptible to noise in the data
 - produces rather bad class probability estimates
 - if it works, it works really well
 - based on learning theory (statistical interpretations are possible)
 - related to windowing
Additive regression

- It turns out that boosting is a greedy algorithm for fitting additive models
- More specifically, implements *forward stagewise additive modeling*
- Same kind of algorithm for numeric prediction:
 1. Build standard regression model (e.g. tree)
 2. Gather residuals
 3. Learn model predicting residuals (e.g. tree)
- To predict, simply sum up individual predictions from all models

Based on a slide by Witten & Frank
Combining Predictions

- **voting**
 - each ensemble member votes for one of the classes
 - predict the class with the highest number of votes (e.g., bagging)

- **weighted voting**
 - make a *weighted* sum of the votes of the ensemble members
 - weights typically depend
 - on the classifiers confidence in its prediction (e.g., the estimated probability of the predicted class)
 - on error estimates of the classifier (e.g., boosting)

- **stacking**
 - Why not use a classifier for making the final decision?
 - training material are the class labels of the training data and the (cross-validated) predictions of the ensemble members
Stacking

- Basic Idea:
 - learn a function that combines the predictions of the individual classifiers

- Algorithm:
 - train n different classifiers $C_1...C_n$ (the base classifiers)
 - obtain predictions of the classifiers for the training examples
 - better do this with a cross-validation!
 - form a new data set (the meta data)
 - classes
 - the same as the original dataset
 - attributes
 - one attribute for each base classifier
 - value is the prediction of this classifier on the example
 - train a separate classifier M (the meta classifier)
Stacking (2)

- Example:

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{11} ... x_{1n_a}</td>
<td>t</td>
</tr>
<tr>
<td>x_{21} ... x_{2n_a}</td>
<td>f</td>
</tr>
<tr>
<td>... </td>
<td>...</td>
</tr>
<tr>
<td>x_{n_c1} ... $x_{n_cn_a}$</td>
<td>t</td>
</tr>
</tbody>
</table>

- Using a stacked classifier:
 - try each of the classifiers $C_1...C_n$
 - form a feature vector consisting of their predictions
 - submit this feature vectors to the meta classifier M
Error-correcting output codes
(Dietterich & Bakiri, 1995)

- Class Binarization technique
 - Multiclass problem → binary problems
 - Simple scheme: One-vs-all coding

- Idea: use error-correcting codes instead
 - one code vector per class

- Prediction:
 - base classifiers predict 1011111, true class = ??

- Use code words that have large pairwise Hamming distance d
 - Can correct up to $(d – 1)/2$ single-bit errors

Based on a slide by Witten & Frank

<table>
<thead>
<tr>
<th>class</th>
<th>class vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1 0 0 0</td>
</tr>
<tr>
<td>b</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>c</td>
<td>0 0 1 0</td>
</tr>
<tr>
<td>d</td>
<td>0 0 0 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>class</th>
<th>class vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>b</td>
<td>0 0 0 1 1 1 1</td>
</tr>
<tr>
<td>c</td>
<td>0 0 1 1 0 0 1</td>
</tr>
<tr>
<td>d</td>
<td>0 1 0 1 0 1 0</td>
</tr>
</tbody>
</table>

7 binary classifiers
More on ECOCs

- Two criteria:
 - *Row separation*: minimum distance between rows
 - *Column separation*: minimum distance between columns
 - (and columns’ complements)
 - Why? Because if columns are identical, base classifiers will likely make the same errors
 - Error-correction is weakened if errors are correlated

- 3 classes \Rightarrow only 2^3 possible columns
 - (and 4 out of the 8 are complements)
 - Cannot achieve row and column separation

- Only works for problems with > 3 classes
Exhaustive ECOCs

- **Exhaustive** code for k classes:
 - Columns comprise every possible k-string …
 - … except for complements and all-zero/one strings
 - Each code word contains $2^{k-1} - 1$ bits

- Class 1: code word is all ones
- Class 2: 2^{k-2} zeroes followed by $2^{k-2} - 1$ ones
- Class i: alternating runs of 2^{k-i} 0s and 1s
 - last run is one short

<table>
<thead>
<tr>
<th>class</th>
<th>class vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1111111</td>
</tr>
<tr>
<td>b</td>
<td>0000111</td>
</tr>
<tr>
<td>c</td>
<td>0011001</td>
</tr>
<tr>
<td>d</td>
<td>0101010</td>
</tr>
</tbody>
</table>
Extensions of ECOCs

- Many different coding strategies have been proposed
 - exhaustive codes infeasible for large numbers of classes
 - Number of columns increases exponentially
 - Random code words have good error-correcting properties on average!
- Ternary ECOCs (Allwein et al., 2000)
 - use three-valued codes -1/0/1, i.e., positive / ignore / negative
 - this can, e.g., also model pairwise classification
- ECOCs don’t work with NN classifier
 - because the same neighbor(s) are used in all binary classifiers for making the prediction
 - But: works if different attribute subsets are used to predict each output bit
Forming an Ensemble

• Modifying the data
 ▪ Subsampling
 • bagging
 • boosting
 ▪ feature subsets
 • randomly feature samples

• Modifying the learning task
 ▪ pairwise classification / round robin learning
 ▪ error-correcting output codes

• Exploiting the algorithm characteristics
 ▪ algorithms with random components
 • neural networks
 ▪ randomizing algorithms
 • randomized decision trees
 ▪ use multiple algorithms with different characteristics

• Exploiting problem characteristics
 • e.g., hyperlink ensembles