Instance-Based Learning

- Rote Learning
- k Nearest-Neighbor Classification
 - Prediction, Weighted Prediction
 - choosing k
 - feature weighting (RELIEF)
 - instance weighting (PEBLS)
 - efficiency
 - kD-trees
- IBL and Rule Learning
 - EACH: Nearest Nested Hyper-Rectangles
 - RISE

Acknowledgements:
Some slides adapted from
- Tom Mitchell
- Eibe Frank & Ian Witten
- Kan, Steinbach, Kumar
- Ricardo Gutierrez-Osuna
- Gunter Grieser
Instance Based Classifiers

- No model is learned
 - The stored training instances themselves represent the knowledge
 - Training instances are searched for instance that most closely resembles new instance
 → lazy learning

- Examples:
 - Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
Rote Learning

<table>
<thead>
<tr>
<th>Day</th>
<th>Temperature</th>
<th>Outlook</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play Golf?</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-05</td>
<td>hot</td>
<td>sunny</td>
<td>high</td>
<td>false</td>
<td>no</td>
</tr>
<tr>
<td>07-06</td>
<td>hot</td>
<td>sunny</td>
<td>high</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>07-07</td>
<td>hot</td>
<td>overcast</td>
<td>high</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-09</td>
<td>cool</td>
<td>rain</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-10</td>
<td>cool</td>
<td>overcast</td>
<td>normal</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>07-12</td>
<td>mild</td>
<td>sunny</td>
<td>high</td>
<td>false</td>
<td>no</td>
</tr>
<tr>
<td>07-14</td>
<td>cool</td>
<td>sunny</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-15</td>
<td>mild</td>
<td>rain</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-20</td>
<td>mild</td>
<td>sunny</td>
<td>normal</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>07-21</td>
<td>mild</td>
<td>overcast</td>
<td>high</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>07-22</td>
<td>hot</td>
<td>overcast</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-23</td>
<td>mild</td>
<td>rain</td>
<td>high</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>07-26</td>
<td>cool</td>
<td>rain</td>
<td>normal</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>07-30</td>
<td>mild</td>
<td>rain</td>
<td>high</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>today</td>
<td>cool</td>
<td>sunny</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
</tbody>
</table>
Nearest Neighbor Classification

<table>
<thead>
<tr>
<th>Day</th>
<th>Temperature</th>
<th>Outlook</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play Golf?</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-05</td>
<td>hot</td>
<td>sunny</td>
<td>high</td>
<td>false</td>
<td>no</td>
</tr>
<tr>
<td>07-06</td>
<td>hot</td>
<td>sunny</td>
<td>high</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>07-07</td>
<td>hot</td>
<td>overcast</td>
<td>high</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-09</td>
<td>cool</td>
<td>rain</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-10</td>
<td>cool</td>
<td>overcast</td>
<td>normal</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>07-12</td>
<td>mild</td>
<td>sunny</td>
<td>high</td>
<td>false</td>
<td>no</td>
</tr>
<tr>
<td>07-14</td>
<td>cool</td>
<td>sunny</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-15</td>
<td>mild</td>
<td>rain</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-20</td>
<td>mild</td>
<td>sunny</td>
<td>normal</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>07-21</td>
<td>mild</td>
<td>overcast</td>
<td>high</td>
<td>true</td>
<td>yes</td>
</tr>
<tr>
<td>07-22</td>
<td>hot</td>
<td>overcast</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
<tr>
<td>07-23</td>
<td>mild</td>
<td>rain</td>
<td>high</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>07-26</td>
<td>cool</td>
<td>rain</td>
<td>normal</td>
<td>true</td>
<td>no</td>
</tr>
<tr>
<td>12-30</td>
<td>mild</td>
<td>rain</td>
<td>high</td>
<td>false</td>
<td>yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tomorrow</th>
<th>mild</th>
<th>sunny</th>
<th>normal</th>
<th>Windy</th>
<th>Play Golf?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mild</td>
<td>sunny</td>
<td>normal</td>
<td>false</td>
<td>yes</td>
</tr>
</tbody>
</table>
Instance Based Classifiers

- No model is learned
 - The stored training instances themselves represent the knowledge
 - Training instances are searched for instance that most closely resembles new instance
 \[\rightarrow \textit{lazy learning} \]
- Examples:
 - Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
 - Nearest-neighbor classifier
 - Uses k “closest” points (nearest neighbors) for performing classification
Nearest Neighbor Classifier

K-Nearest Neighbor algorithms classify a new example by comparing it to all previously seen examples. The classifications of the *k most similar previous cases* are used for predicting the classification of the current example.

The training examples are used for:
- providing a library of sample cases
- re-scaling the similarity function to maximize performance
Nearest Neighbors

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

k nearest neighbors of an example x are the data points that have the k smallest distances to x.
The predicted class is determined from the nearest neighbor list

- **classification**
 - take the majority vote of class labels among the k-nearest neighbors
 \[
 \hat{y} = \max_c \sum_{i=1}^{k} \begin{cases}
 1 & \text{if } y_i = c \\
 0 & \text{if } y_i \neq c
 \end{cases} = \max_c \sum_{i=1}^{k} 1(y_i = c)
 \]

- can be easily be extended to **regression**
 - predict the average value of the class value of the k-nearest neighbors
 \[
 \hat{y} = \frac{1}{k} \sum_{i=1}^{k} y_i
 \]
Weighted Prediction

- Often prediction can be improved if the influence of each neighbor is weighted

\[\hat{y} = \frac{\sum_{i=1}^{k} w_i \cdot y_i}{\sum_{i=1}^{k} w_i} \]

- Weights typically depend on distance, e.g.

\[w_i = \frac{1}{d(x_i, x)^2} \]

- Note:
 - with weighted distances, we could use all examples for classifications (→ Inverse Distance Weighting)
Nearest-Neighbor Classifiers

- Require three things
 - The set of stored examples
 - Distance Metric to compute distance between examples
 - The value of k, the number of nearest neighbors to retrieve

- To classify an unknown example:
 - Compute distance to other training examples
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown example (e.g., by taking majority vote)
Voronoi Diagram

- shows the regions of points that are closest to a given set of points
- boundaries of these regions correspond to potential decision boundaries of 1NN classifier
Choosing the value of k

1-NN

5-NN

20-NN
Choosing the value of k

- If k is too small
 - sensitive to noise in the data (misclassified examples)

- If k is too large
 - neighborhood may include points from other classes
 - limiting case: $k \geq |D|$
 - all examples are considered
 - largest class is predicted

- good values can be found
 - e.g., by evaluating various values with cross-validation on the training data
Distance Functions

- Computes the distance between two examples
 - so that we can find the “nearest neighbor” to a given example
- General Idea:
 - reduce the distance $d(x_1, x_2)$ of two examples to the distances $d_A(v_1, v_2)$ between two values for attribute A
- Popular choices
 - **Euclidean Distance:**
 - straight-line between two points
 $$d(x_1, x_2) = \sqrt{\sum_A d_A(v_{1,A}, v_{2,A})^2}$$
 - **Manhattan or City-block Distance:**
 - sum of axis-parallel line segments
 $$d(x_1, x_2) = \sum_A d_A(v_{1,A}, v_{2,A})$$
Distance Functions for Numerical Attributes

- Numerical Attributes:
 - distance between two attribute values
 \[d_A(v_1, v_2) = |v_1 - v_2| \]

- Normalization:
 - Different attributes are measured on different scales
 → values need to be normalized in [0,1]:
 \[\hat{v}_i = \frac{v_i - \min v_j}{\max v_j - \min v_j} \]
 - Note:
 - This normalization assumes a (roughly) uniform distribution of attribute values
 - For other distributions, other normalizations might be preferable
 - e.g.: logarithmic for salaries?
Distance Functions for Symbolic Attributes

- 0/1 distance

\[d_A(v_1, v_2) = \begin{cases} 0 & \text{if } v_1 = v_2 \\ 1 & \text{if } v_1 \neq v_2 \end{cases} \]

- Value Difference Metric (VDM) (Stanfill & Waltz 1986)
 - two values are similar if they have approximately the same distribution over all classes (similar frequencies in all classes)
 - sum over all classes the difference of the percentage of examples with value \(v_1 \) in this class and examples with value \(v_1 \) in this class

\[d_A(v_1, v_2) = \sum_c \left| \frac{n_{1,c}}{n_1} - \frac{n_{2,c}}{n_2} \right|^k \]

- used in PEBLS with \(k = 1 \)
 (Parallel Exemplar-Based Learning System; Cost & Salzberg, 1993)
VDM Example

Distance between values:

\[
d(\text{Refund}=\text{Yes}, \text{Refund}=\text{No}) = | 0/3 - 3/7 | + | 3/3 - 4/7 | = 6/7
\]

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Refund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>No</td>
<td>3</td>
</tr>
</tbody>
</table>

\[
\begin{array}{|c|c|c|}
\hline
\text{Class} & \text{Refund} \\
\hline
\text{Yes} & 0 & 3 \\
\text{No} & 3 & 4 \\
\hline
\end{array}
\]
VDM Example

Distance between values:

\[d(\text{Single, Married}) = |2/4 - 0/4| + |2/4 - 4/4| = 1 \]

\[d(\text{Single, Divorced}) = |2/4 - 1/2| + |2/4 - 1/2| = 0 \]

\[d(\text{Married, Divorced}) = |0/4 - 1/2| + |4/4 - 1/2| = 1 \]
Other Distance Functions

- Other distances are possible
 - hierarchical attributes
 - distance of the values in the hierarchy
 - e.g., length of shortest path from node v_1 to node v_2
 - string values
 - edit distance
- in general
 - distances are domain-dependent
 - can be chosen appropriately

Distances for Missing Values

- not all attribute values may be specified for an example
- Common policy:
 - assume missing values to be maximally distant
Feature Weighting

- Not all dimensions are equally important
 - comparisons on some dimensions might even be completely irrelevant for the prediction task
 - straight-forward distance functions give equal weight to all dimensions
- Idea:
 - use a weight for each attribute to denote its importance
 - e.g., Weighted Euclidean Distance:
 \[
 d(x_1, x_2) = \sqrt{\sum_A w_A \cdot d_A(v_{1,A}, v_{2,A})^2}
 \]
 - weights \(w_A \) can be set by user or determined automatically
- Survey of feature weighting algorithms:
 - Dietrich Wettschereck, David W. Aha, Takao Mohri:
 A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms.
Basic idea:

- in a local neighborhood around an example x a good attribute A should
 - allow to discriminate x from all examples of different classes (the set of *misses*)
 - therefore the probability that the attribute has a different value for x and a miss m should be high
 - have the same value for all examples of the same class as x (the set of *hits*)
 - therefore the probability that the attribute has a different value for x and a hit h should be low

\rightarrow try to estimate and maximize $w_A = Pr(v_x \neq v_m) - Pr(v_x \neq v_h)$

where v_x is the value of attribute A in example x

- this probability can be estimated via the average distance
RELIEF
(Kira & Rendell, ICML-92)

- set all attribute weights $w_A = 0.0$
- for $i = 1$ to r (← user-settable parameter)
 - select a random example x
 - find
 - h: nearest neighbor of same class (near hit)
 - m: nearest neighbor of different class (near miss)
 - for each attribute A
 - $w_A \leftarrow w_A + \frac{1}{r} \cdot (d_A(m, x) - d_A(h, x))$

where $d_A(x, y)$ is the distance in attribute A between examples x and y (normalized to $[0,1]$-range).
Lazy Learning Algorithms

- kNN is considered a lazy learning algorithm
 - Defers data processing until it receives a request to classify an unlabelled example
 - Replies to a request for information by combining its stored training data
 - Discards the constructed answer and any intermediate results

- Other names for lazy algorithms
 - Memory-based, Instance-based, Exemplar-based, Case-based, Experience-based

- This strategy is opposed to eager learning algorithms which
 - Compiles its data into a compressed description or model
 - Discards the training data after compilation of the model
 - Classifies incoming patterns using the induced model
Learning Prototypes

- Only those instances involved in a decision need to be stored
 - Noisy instances should be filtered out
- Idea:
 - only use prototypical examples
Learning Prototypes: IB-algorithms

- Case Study for prototype selection
- **IB1**: Store all examples
 - high noise tolerance
 - high memory demands
- **IB2**: Store examples that are misclassified by current example set
 - low noise tolerance
 - low memory demands
- **IB3**: like IB2, but
 - maintain a counter for the number of times the example participated in correct and incorrect classifications
 - use a significant test for filtering noisy examples
 - improved noise tolerance
 - low memory demands
Instance Weighting

- Selecting instances is a special case of instance weighting
- Idea:
 - all instances are assigned weights
 - instances with higher weights are always distant
 - hence have a low impact on classification
 - instance weight \(w_x = 0 \) ignores this instance \(x \)
- Similarity function used in PEBLS (Cost & Salzberg, 1993)
 \[
 d(x_1, x_2) = \frac{1}{w_{x_1} \cdot w_{x_2}} \cdot \sum_A d_A(v_1, v_2)^k
 \]
 where \(w_x = \frac{\text{Number of times } x \text{ has correctly predicted the class}}{\text{Number of times } x \text{ has been used for prediction}} \)
 - \(w_x \approx 1 \) if instance \(x \) predicts well
 - \(w_x < 1 \) if instance \(x \) does not predict well
Efficiency of NN algorithms

- very efficient in training
 - only store the training data
- not so efficient in testing
 - computation of distance measure to every training example
 - much more expensive than, e.g., rule learning

Note that kNN and 1NN are equal in terms of efficiency
- retrieving the k nearest neighbors is (almost) no more expensive than retrieving a single nearest neighbor
- k nearest neighbors can be maintained in a queue
Finding nearest neighbors efficiently

- Simplest way of finding nearest neighbour:
 - linear scan of the data
 - classification takes time proportional to the product of the number of instances in training and test sets

- Nearest-neighbor search can be done more efficiently using appropriate data structures
 - kD-trees
 - ball trees
kD-Trees

- common setting (others possible)
 - each level corresponds to one of the attributes
 - order of attributes can be arbitrary, fixed, and cyclic
 - each level splits according to this attribute
 - ideally use the median value (results in balanced trees)
 - often simply use the value of the next example

![Diagram of kD-Trees](image)
Building kD-trees incrementally

- Big advantage of instance-based learning: classifier can be updated incrementally
 - Just add new training instance after it arrives!
- Can we do the same with kD-trees?
- Heuristic strategy:
 - Find leaf node containing new instance
 - If leaf is empty
 - place instance into leaf
 - Else
 - split leaf according to the next dimension
 - Alternatively: split according to the longest dimension
 - idea: preserve squareness
- Tree should be re-built occasionally
 - e.g., if depth grows to twice the optimum depth
Using kD-trees: example

- The effect of a kD-tree is to partition the (multi-dimensional) sample space according to the underlying data distribution:
 - finer partitioning in regions with high density
 - coarser partitioning in regions with low density
- For a given query point:
 - descending the tree to find the data points lying in the cell that contains the query point
 - examine surrounding cells if they overlap the ball centered at the query point and the closest data point so far
 - recursively back up one level and check distance to the split point
 - if overlap also search other branch
 → only a few cells have to be searched
Using kD-trees: example

- Assume we have example [1,5]
 - Unweighted Euclidian distance
 \[d(e_1, e_2) = \sqrt{\sum_A d_A(e_1, e_2)^2} \]
- sort the example down the tree:
 - ends in leaf [4,7]
- compute distance to example in the leaf
 \[d([1,5], [4,7]) = \sqrt{(1-4)^2 + (5-7)^2} = \sqrt{13} \]
- now we have to look into rectangles that may contain a closer example
 - remember the difference to the closest example \(d_{\text{min}} = \sqrt{13} \)
Using kD-trees: example

- go up one level (to example [5,4])
- compute distance to the closest point on this split (difference only on Y)
 \[d([1,5],[*,4]) = \sqrt{0^2 + (5-4)^2} = 1 \]
- if the difference is smaller than the current best difference
 \[d([1,5],[*,4]) = 1 < \sqrt{13} = d_{\text{min}} \]
- then we could have a closer example in area \(Y < 4 \).
 - go down the other branch
 - and repeat recursively
Using kD-trees: example

- go down to leaf [2,3]
- compute distance to example in this leaf
 \[d([1,5],[2,3]) = \sqrt{(1-2)^2 + (5-3)^2} = \sqrt{5} \]
- if the difference is smaller than the current best difference
 \[d([1,5],[2,3]) = \sqrt{5} < \sqrt{13} = d_{\text{min}} \]
- then the example in the leaf is the new nearest neighbor and
 \[d_{\text{min}} = \sqrt{5} < \sqrt{13} \]
- this is recursively repeated until we have processed the root node
 - no more distances have to be computed
Ball trees

- Problem in kD-trees: corners
- Observation:
 - no need to make sure that regions don't overlap
- Can use balls (hyperspheres) instead of hyperrectangles
 - A ball tree organizes the data into a tree of k-dimensional hyperspheres
 - Normally allows for a better fit to the data and thus more efficient search
Nearest Hyper-Rectangle

- Nearest-Neighbor approaches can be extended to compute the distance to the nearest hyper-rectangle
 - a hyper-rectangle corresponds to a rule
 - conditions are intervals along each dimension

- To do so, we need to adapt the distance measure
 - distance of a point to a rectangle instead of point-to-point distance
Rectangle-to-Point Distance

\[d(x, R) = 0 \]

\[d(x, R) = d_A(x, R) \]

\[d(x, R) = d_B(x, R) \]

\[d(x, R) = d_A(x, R) + d_B(x, R) \]
Rectangle-to-Point Attribute Distance

- numeric Attributes
 - distance of the point to the closest edge of the rectangle along this attribute (i.e., distance to the upper/lower bound of the interval)

\[
d_A(v, R) = \begin{cases}
0 & \text{if } v_{\min, A_R} \leq v \leq v_{\max, A_R} \\
v - v_{\max, A_R} & \text{if } v > v_{\max, A_R} \\
v_{\min, A_R} - v & \text{if } v < v_{\min, A_R}
\end{cases}
\]

if rule \(R \) uses \(v_{\min, A_R} \leq A \leq v_{\max, A_R} \) as condition for attribute \(A \)

- symbolic attributes
 - 0/1 distance

\[
d_A(v, R) = \begin{cases}
0 & \text{if } v = v_{A_R} \\
1 & \text{if } v \neq v_{A_R}
\end{cases}
\]

if rule \(R \) uses \(A = v_{A_R} \) as condition for attribute \(A \)

One can also adapt other distances. RISE uses a version of the VDM.
NEAR (Salzberg, 1991)

1. randomly choose r seed examples
 - convert them into rules
2. for each example x
 - choose rule $R_{\text{min}} = \arg \min_R d(x, R)$
 - if x is classified correctly by R_{min}
 - enlarge the condition of R_{min} so that x is covered
 - for each numeric attribute enlarge the interval if necessary
 - for each symbolic attribute delete the condition if necessary
 - else if x is classified incorrectly by R_{min}
 - add example x as a new rule

- NEAR uses both instance and feature weighting

$$d(x, R) = w_x \cdot \sqrt{\sum_A w_A^2 d_A(x, R)^2}$$
Instance and Feature Weighting in NEAR

- **Instance Weighting** as in PEBLS

- **Feature Weights** are computed incrementally
 - if an example is incorrectly classified
 - the weights of all matching attributes are increased by a fixed percentage (20%)
 - this has the effect of moving the example farther away along these dimensions
 - the weights of all attributes that do not match are decreased by a fixed percentage (20%)
 - if an example is correctly classified
 - do the opposite (increase the weights analogously)
Second Chance Heuristic

An improved version used a Second Chance Heuristic

- if the nearest rule did not classify correctly, try the second one
 - if this one matches → expand it to cover the example
 - if not → add the example as a new rule
- this can lead to the generation of nested rules
 - i.e., rectangles inside of other rectangles
 - at classification time, use the smallest matching rectangle
 - but this did not work well (overfitting?)
 - such nested rules may be interpreted as rules with exceptions
RISE (Domingos, 1996)
(Rule Induction from a Set of Exemplars)

1. turn each example into a rule resulting in a theory T
2. repeat
 • for each rule R
 i. choose uncovered example $x_{\text{min}} = \arg\min_x d(x, R)$
 ii. $R' = \text{minimalGeneralisation}(R, x_{\text{min}})$
 iii. replace R with R' if this does not decrease the accuracy of T
 iv. delete R' if it is already part of T (duplicate rule)
3. until no further increase in accuracy

- RISE uses the simple distance function

$$d(x, R) = \sum_A d_A(x, R)^k$$
Differences NEAR and RISE

- **NEAR**
 - focuses on examples
 - incremental training
 - instance weighted and feature-weighted Euclidean distance
 - tie breaking using the smallest rule

- **RISE**
 - focuses on rules
 - batch training
 - straight-forward Manhattan distance
 - tie breaking with Laplace heuristic
Discussion

- Nearest Neighbor methods are often very accurate
 - Assumes all attributes are equally important
 - Remedy: attribute selection or weights
 - Possible remedies against noisy instances:
 - Take a majority vote over the k nearest neighbors
 - Removing noisy instances from dataset (difficult!)
 - Statisticians have used k-NN since early 1950s
 - If $n \to \infty$ and $k/n \to 0$, error approaches minimum
 - can model arbitrary decision boundaries
- ...but somewhat inefficient (at classification time)
 - straight-forward application maybe too slow
 - kD-trees become inefficient when number of attributes is too large (approximately > 10)
 - Ball trees work well in higher-dimensional spaces
- several similarities with rule learning