Iterative Optimization of Rule Sets

Jiawei Du
16. November 2010

Prof. Dr. Johannes Fürnkranz
Frederik Janssen
Overview

- REP-Based Algorithms
- RIPPER
- Variants
- Evaluation
- Summary
REP-Based Algorithms

- Split Training Data
- Learn a Rule Set
- Prune the Rule Set
- Learn a Rule
- Prune the Rule
- Check the Rule
- Learn a Rule Set (I-REP*)
 - Split Training Data
 - Learn a Rule
 - Prune the Rule
 - Check the Rule
- Learn a Rule Set (I-REP*)
 - Optimize the Rule Set
 - Get a Rule
 - Generate Variants
 - Choose One Variant
 - Learn Rules (I-REP*)
- Learn a Rule Set (I-REP*)
 - Optimize the Rule Set
 - k times

k means the number of optimization iterations
RIPPER
Iterative Optimization of Rule Sets

<table>
<thead>
<tr>
<th>Candidate Rule</th>
<th>Growing Phase</th>
<th>Pruning Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Rule</td>
<td>Growing a new rule from an empty rule</td>
<td>The pruning heuristic is guided to minimize the error of the single rule</td>
</tr>
<tr>
<td>Replacement</td>
<td>See Old Rule</td>
<td>The pruning heuristic is guided to minimize the error of the entire rule set</td>
</tr>
<tr>
<td>Revision</td>
<td>Further growing the given Old Rule</td>
<td>See Replacement</td>
</tr>
</tbody>
</table>

Selection among the candidate rules based on Minimum Description Length (MDL)

Old Rule
Replacement
Revision

Selection Criterion

Best Rule

Learn a Rule Set (I-REP*)
Optimize the Rule Set

Get a Rule
Generate Variants
Choose One Variant
Learn Rules (I-REP*)

n times

* n means the number of rules in the rule set
1st Variant

New Pruning Method
Candidate Rule Abridgment

Rule: Class = A: C_1, C_2, C_3, C_4

Original Pruning Method
R_1: Class = A: C_1, C_2, C_3 (after 1. Iteration)
R_2: Class = A: C_1, C_2 (after 2. Iteration)
R_3: Class = A: C_1 (after 3. Iteration)

New Pruning Method
R_1’: Class = A: C_2, C_3, C_4
R_2’: Class = A: C_1, C_3, C_4
R_3’: Class = A: C_1, C_2, C_4
R_4’: Class = A: C_1, C_2, C_3 (after 1. Iteration)

* n means the number of rules in the rule set
1st Variant
Search Space
2nd Variant

Simplified Selection Criterion

Accuracy instead of **MDL**

\[
\text{MDL} (RS') = DL (RS') - \text{Potentials} (RS')
\]

\[
\text{Potentials} (RS') = \sum \text{Potential}(R'_i) \quad R'_i \in \{RS'\}
\]

\[
\text{Potential}(R'_i) \quad \text{calculates the potential of decreasing the DL of the rule sets if the rule } R'_i \text{ is deleted}
\]

\[
\text{Accuracy}(R_i) = \frac{tp + tn}{P + N} \quad R_i \in \{\text{OldRule, Replacement, Revision}\}
\]

- **tp** means the number of positive examples covered by the relevant rule
- **tn** means the number of negative examples that are not covered by the relevant rule
- **P** and **N** mean the total number of positive and negative examples in the training set

\[\sum \quad n \text{ times}\]

\[\ast n \text{ means the number of rules in the rule set}\]
Evaluation

- **Data Sets**

 20 real data sets selected from the UCI repository

 - 9 data sets (type categorical)
 - 4 data sets (type numerical)
 - 7 data sets (type mixed)

- **Evaluation Method**

 10-fold stratified cross-validation

 - run 10 times on each data set

 - training set 90%
 - testing set 10%
Evaluation

RIPPER (SeCoRIP)

- The correctness of rule sets is increased *(the percentage of the correctly classified examples in the testing set)*
- The size of rule set is decreased
- The number of conditions in each rule is decreased

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>AvgCorr.</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeCoRIP_0</td>
<td>86.19</td>
<td>-</td>
</tr>
<tr>
<td>SeCoRIP_1</td>
<td>87.56</td>
<td>1.59%</td>
</tr>
<tr>
<td>SeCoRIP_2</td>
<td>87.61</td>
<td>0.06%</td>
</tr>
<tr>
<td>SeCoRIP_3</td>
<td>87.53</td>
<td>-0.08%</td>
</tr>
<tr>
<td>SeCoRIP_4</td>
<td>87.64</td>
<td>0.12%</td>
</tr>
<tr>
<td>SeCoRIP_5</td>
<td>87.45</td>
<td>-0.21%</td>
</tr>
</tbody>
</table>

Profit

\[
\text{Profit}_{i+1} = \frac{\text{AvgCorr}_{i+1} - \text{AvgCorr}_i}{\text{AvgCorr}_i} \quad i \in \{0, 1, 2, 3, 4\}
\]
Evaluation

RIPPER (Convergence of SeCoRIP)

Group A
- The maximal value appears at the x-axis
- Optimizations $= 0$
- These points converge to a definite point
- The relevant data sets contain only nominal attributes

Group B
- The maximal value mainly appears at the x-axis
- Optimizations $\in \{1, 2\}$
- These points converge to a definite point
- The relevant data sets contain more nominal attributes than numeric ones
Evaluation

RIPPER (Convergence of SeCoRIP)

- The maximal value mainly appears at the x-axis $\text{Optimizations} \in \{5, 6, 7\}$
- These points converge to a definite point

Group C

Group D

- The points of the lines show a upward trend at the x-axis $\text{Optimizations} \in \{8, 9, 10\}$
- The signal of convergence is not observable
- The relevant data sets contain more numeric attributes than nominal ones
Evaluation

RIPPER (Convergence of SeCoRIP)

- N (nominal attributes) > N (numerical attributes)
 - the accuracy of the optimized rule sets often converge to a definite value with the increasing of the number of optimization iterations
 - the definite value here is usually not the maximum or minimum value obtained so far
- N (nominal attributes) < N (numerical attributes)
 - The value of the correctness keeps an upward trend with the increasing of the number of optimization iterations
 - The signal of convergence cannot be obviously detected
Evaluation

RIPPER (SeCoRIP)

- The correctness of rule sets is increased
- The size of rule set is decreased (the sum of all rules in the constructed rule sets)
- The number of conditions in each rule is decreased (the sum of all conditions / the size of rule set)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>AvgRules</th>
<th>AvgCond. in one Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeCoRIP_0</td>
<td>8.75</td>
<td>1.94</td>
</tr>
<tr>
<td>SeCoRIP_1</td>
<td>7.35</td>
<td>1.65</td>
</tr>
<tr>
<td>SeCoRIP_2</td>
<td>7.25</td>
<td>1.69</td>
</tr>
<tr>
<td>SeCoRIP_3</td>
<td>7.40</td>
<td>1.73</td>
</tr>
<tr>
<td>SeCoRIP_4</td>
<td>7.55</td>
<td>1.73</td>
</tr>
<tr>
<td>SeCoRIP_5</td>
<td>7.50</td>
<td>1.73</td>
</tr>
</tbody>
</table>
Evaluation

1st Variant (SeCoRIP*)

- The new pruning method will have no obvious effect on the rule sets whose rules contain too few conditions
- Sometimes the constructed Abridgement is the same as the candidate rule Revision or even the original Old Rule

![Diagram](image)

- The correctness of the rule sets can be well improved when the relevant rules normally contain more than three conditions
Evaluation

2nd Variant (SeCoRIP')
Evaluation

2nd Variant (SeCoRIP’)

Compare to SeCoRIP:
- The correctness of the constructed rule sets are often worse
- The difference can be reduced with the increasing of the number of optimization iterations
- Several data sets cannot be well processed
- The number of rules and conditions can also be decreased

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>AvgRules</th>
<th>AvgCond. in one Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeCoRIP_0</td>
<td>8.75</td>
<td>1.94</td>
</tr>
<tr>
<td>SeCoRIP_1</td>
<td>7.05</td>
<td>1.70</td>
</tr>
<tr>
<td>SeCoRIP_2</td>
<td>7.00</td>
<td>1.72</td>
</tr>
<tr>
<td>SeCoRIP_3</td>
<td>7.25</td>
<td>1.74</td>
</tr>
<tr>
<td>SeCoRIP_4</td>
<td>7.05</td>
<td>1.74</td>
</tr>
<tr>
<td>SeCoRIP_5</td>
<td>7.25</td>
<td>1.77</td>
</tr>
</tbody>
</table>
Summary

- **RIPPER** *(postprocessing phase)*
 - The correctness of rule sets is increased
 - The results often converge to a definite value
 - Better handling of the data sets which contain more numeric attributes
 - The number of rules and conditions is decreased

- **1st Variant** *(new pruning method)*
 - Not suitable for the rule sets whose rules contain too few conditions
 - Taking positive effect on the rule sets whose rules contain sufficient number of conditions

- **2nd Variant** *(simplified selection criterion)*
 - Remaining the features of the original version
 - The results are not as good as the original version
 - The original selection criterion MDL is not easily replaceable
Thank you for your attention!