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Abstract. In this paper, we argue that search heuristics for inductive rule learn-
ing algorithms typically trade off consistency and coverage, and we investigate
this trade-off by determining optimal parameter settings for five different parame-
trized heuristics. This empirical comparison yields several interesting results. Of
considerable practical importance are the default values that we establish for these
heuristics, and for which we show that they outperform commonly used instan-
tiations of these heuristics. We also gain some theoretical insights. For example,
we note that it is important to relate the rule coverage to the class distribution,
but that the true positive rate should be weighted more heavily than the false
positive rate. We also find that the optimal parameter settings of these heuristics
effectively implement quite similar preference criteria.

1 Introduction

Evaluation metrics for rule learning typically, in one way or another, trade off consis-
tency and coverage. On the one hand, rules should be as consistent as possible by only
covering a small percentage of negative examples. On the other hand, rules with high
coverage tend to be more reliable, even though they might be less precise on the training
examples than alternative rules with lower coverage. An increase in coverage of a rule
typically goes hand-in-hand with a decrease in consistency, and vice versa. In fact, the
conventional top-down hill-climbing search for single rules follows exactly this prin-
ciple: starting with the empty rule, conditions are greedily added, thereby decreasing
coverage but increasing consistency.

In this work, we show that five well-known rule evaluation metrics (a cost trade-
off, a relative cost trade-off, the m-estimate, the F -measure, and the Klösgen measures)
provide parameters that allow to control this trade-off. After a brief discussion of these
heuristics, we will report on an extensive experimental study with the goal of determin-
ing optimal values for each of their respective parameters, which will allow us to draw
some interesting conclusions about heuristic rule learning.

This is the authors’ version of the work from www.ke.tu-darmstadt.de. The origi-
nal publication is available at www.springerlink.com, DOI: 10.1007/978-3-540-88411-
8 7, and appeared in Boulicaut, Jean-Franois et al. (Eds.): Proceedings of the
11th International Conference on Discovery Science (DS-08), pp. 40–51, 2008,
http://www.springerlink.com/content/5h478u088k513n6w/.
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2 Separate-and-Conquer Rule Learning

The goal of an inductive rule learning algorithm is to automatically learn rules that
allow to map the examples of the training set to their respective classes. Algorithms
differ in the way they learn individual rules, but most of them employ a separate-and-
conquer or covering strategy for combining rules into a rule set [5], including RIPPER
[3], arguably one of the most accurate rule learning algorithms today.

Separate-and-conquer rule learning can be divided into two main steps: First, a sin-
gle rule is learned from the data (the conquer step). Then all examples which are cov-
ered by the learned rule are removed from the training set (the separate step), and the
remaining examples are “conquered”. The two steps are iterated until no more positive
examples are left. In a simple version of the algorithm this ensures that every positive
example is covered at least by one rule (completeness) and no negative example is in-
cluded (consistency). More complex versions of the algorithm will allow certain degrees
of incompleteness (leaving some examples uncovered) and inconsistencies (covering
some negative examples).

For our experiments, we implemented a simple separate-and-conquer rule-learner
with a top-down hill-climbing search for individual rules. Rules are greedily refined
until no more negative examples are covered, and the best rule encountered in this
refinement process (not necessarily the last rule) is returned. We did not employ explicit
stopping criteria or pruning techniques for overfitting avoidance, because we wanted to
gain a principal understanding of what constitutes a good rule evaluation metric.

3 Rule Learning Heuristics

As discussed above, individual rules should simultaneously optimize two criteria:

Coverage: the number of positive examples that are covered by the rule (p) should be
maximized and

Consistency: the number of negative examples that are covered by the rule (n) should
be minimized.

Thus, most heuristics depend on p and n, but combine these values in different
ways. A few heuristics also include other parameters, such as the length of the rule, but
we will not further consider those in this paper. In the following, we will closely follow
the terminology and notation introduced in [6]. As an evaluation framework coverage
spaces [6], un-normalized ROC spaces, are used in the remainder of this paper. These
allow to graphically interpret evaluation metrics by their isometrics.

3.1 Basic Heuristics

true positive rate (recall) htpr = hRecall =
p
P

As longer rules typically cover fewer examples, we would argue that this is just another way
of measuring coverage. Also, in [7] it was recently found that including rule length does not
improve the performance on heuristics that have been derived by meta-learning.
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computes the coverage on the positive examples only. It is – on its own – equivalent
to simply using p (because P , the total number of positive examples, is constant for a
given dataset). Due to its independence of covered negative examples, its isometrics are
parallel horizontal lines.
false positive rate hfpr =

n
N

computes the coverage on the negative examples only (N stands for the total number
of negative examples). Its isometrics are parallel vertical lines.
full coverage hCoverage =

p+n
P+N

computes the fraction of all covered examples. The maximum heuristic value is
reached by the universal theory, which covers all examples (the point (N,P ) of the
coverage space). The isometrics are parallel lines with a slope of −1 (similar to those
of the lower right graph in Figure 1).

3.2 Composite Heuristics

The heuristics shown in the previous section only optimize one of the two criteria. Two
simple criteria, which try to optimize both criteria are
precision hPrecision = p

p+n
computes the fraction of correctly classified examples (p) among all covered exam-

ples (p+n). Its isometrics rotating around the origin.
weighted relative accuracy (WRA) hWRA = htpr − hfpr

computes the difference between the true positive rate and the false positive rate.
The upper middle graph of Figure 1 shows the isometrics of WRA.

However, these two heuristics are known to have complementary disadvantages.
Precision is known to overfit the data, i.e., to strongly prefer consistency over coverage.
Conversely, the experimental evidence given in [11], which is consistent with our own
experience, suggests that WRA has a tendency to overgeneralize, i.e., that it places too
strong emphasis on coverage.

Thus, it is necessary to find the right trade-off between consistency and coverage.
Many other heuristics implement fixed trade-offs between these criteria. In the next
section, we will discuss five heuristics that allow to tune this trade-off with a parameter.

3.3 Parametrized Heuristics

In this section we show that the heuristics which we consider in this work all have a
parameter that trades off consistency for coverage, but do so in different forms. The
two cost measures directly trade off absolute or relative positive and negative coverage.
Thereafter, we will see three measures that use hPrecision for optimizing consistency, but
use different measures (hRecall, hWRA, hCoverage) for optimizing coverage.
cost measure hcost = c · p− (1− c) · n

allows to directly trade off consistency and coverage with a parameter c ∈ [0, 1].
c = 0 only considers consistency, c = 1 only coverage. If c = 1/2, the resulting
heuristic (hAccuracy = p− n) is equivalent to accuracy, which computes the percentage
of correctly classified examples among all training examples. The isometrics of this
heuristics are parallel lines, with a slope of (1−c)/c.
relative cost measure hrcost = cr · htpr − (1− cr) · hfpr
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trades off the true positive rate and the false positive rate. This heuristic is quite
similar to hcost. In fact, for any particular data set, one can choose c = N

P+N · cr to
transform the cost measure into the relative cost measure. However, this normalization
may (and will) make a difference if the same value is used across a wide variety of
datasets with different class distributions. Clearly, setting cr = 1/2 is compatible (as
defined in [6]) with WRA.

F -measure hF-Measure =
(β2+1)·hPrecision·hRecall

β2·hPrecision+hRecall

The F -measure [10] has its origin in Information Retrieval and trades off the basic
heuristics hPrecision and hRecall. Basically, the isometrics (for an illustration see [6]) are
identical to those of precision, with the difference that the rotation point is not in the
point (0, 0) but in a point (−g, 0), where g depends on the choice of β. If β → 0, the
origin moves towards (0, 0), and the isometrics correspond to those of hPrecision. The
more the parameter is increased the more the origin of the isometrics is shifted in the
direction of the negative N -axis. The observable effect is that the lines in the isometrics
becomes flatter and flatter. Conversely if β → ∞ the resulting isometrics approach
those of hRecall which are horizontal parallel lines.

m-estimate hm-estimate =
p+m· P

P+N

p+n+m

The idea of this parametrized heuristic [2] is to presume that a rule coversm training
examples a priori, maintaining the distribution of the examples in the training set (m ·
P/(P+N) examples are positive). Form = 2 and assuming an equal example distribution
(P = N ), we get the Laplace heuristic hLaplace as a special case.

If we inspect the isometrics in relation to the different parameter settings, we ob-
serve a similar behavior as discussed above for the F -measure, except that the origin
of the turning point now does not move on the N -axis, but it is shifted in the direction
of the negative diagonal of the coverage space (cf. [6] for an illustration). m = 0 cor-
responds to precision, and for m → ∞ the isometrics become increasingly parallel to
the diagonal of the coverage space, i.e., they approach the isometrics of hWRA. Thus, the
m-estimate trades off hPrecision and hWRA.
Klösgen hKlösgen = (hCoverage)

ω ·
(
hPrecision − P

P+N

)
This family of measures was first proposed in [9] and trades off Precision Gain (the

increase in precision compared to the default distribution P/(P+N)) and Coverage. The
isometrics of Precision Gain on its own behave like the isometrics of precision, except
that their labels differ (the diagonal now always corresponds to a value of 0).

Setting ω = 1 results in WRA, and ω = 0 yields Precision Gain. Thus, the Klösgen
measure starts with the isometrics of hPrecision and first evolves into those of hWRA, just
like them-estimate. However, the transformation takes a different route, with non-linear
isometrics. The first two graphs of Figure 1 show the result for the parameter settings
ω = 0.5 and ω = 1 (WRA), which were suggested by Klösgen [9].

With a further increase of the parameter, the isometrics converge to hCoverage. The
middle left graph shows the parameter setting ω = 2, which was suggested in [13].
Contrary to the previous settings, the isometrics now avoid regions of low coverage,
because low coverage is more severely penalized. A further increase of the parameter
results in sharper and sharper bends of the isometrics. The influence of WRA (the part
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Fig. 1. Klösgen-Measure for ω = 0.5, 1, 2, 7, 30, 500

parallel to the diagonal) vanishes except for very narrow regions around the diagonal,
and the isometrics gradually transform into those of coverage.

Another interesting variation of the Klösgen measure is to divide hCoverage by 1 −
hCoverage instead of raising it to the ω-th power. It has been shown before [9] that this is
equivalent to correlation (hCorr =

p·(N−n)−n·(P−p)√
P ·N ·(p+n)·(P−p+N−n)

).

4 Experimental setup

The primary goal of our experimental work was to determine settings for the parametri-
zed heuristics that are optimal in the sense that they will result in the best classifica-
tion accuracy on a wide variety of datasets. Clearly, the optimal setting for individual
datasets may vary.

We arbitrarily selected 27 tuning datasets from the UCI-Repository [1] for deter-
mining the optimal parameters. To check the validity of the found parameter settings,
we selected 30 additional validation datasets. The names of all 57 datasets could be
found in [8].

The performance on individual datasets was evaluated with a 10-fold stratified Cross
Validation implemented in Weka [12]. As we have a large number of different individ-
ual results, a key issue is how to combine them into an overall value. We have exper-
imented with several choices. Our primary method was the macro-averaged accuracy
of one parametrization of a parametrized heuristic which is defined by the sum of all
accuracies (the fraction of correctly classified examples among all examples) of the
datasets normalized with the number of datasets. This method gives the same weight to
all datasets. Alternatively, one could also give the same weight to each example, which
results in micro-averaged accuracy. It is defined as the sum of all correctly classified
examples divided by the total number of examples among all datasets. In effect, this
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Algorithm 1 SEARCHBESTPARAMETER(a, b, i, h, dataSets)

accformer = accbest # global params
params = CREATELIST(a, b, i) # initialize candidate params
pbest = GETBESTPARAM(h, params, dataSets)
accbest = GETACCURACY(pbest)
# stop if no substantial improvement (t = 0.001)
if accbest − accformer < t then

return (pbest)
end if
# continue the search with a finer resolution
SEARCHBESTPARAMETER(pbest − i

2
, pbest +

i
2
, i
10
, h, dataSets)

method assigns a higher weight to datasets with many examples, whereas those with
few examples get a smaller weight.

As there are large differences in the variances of the accuracies of the individual
datasets, one could also focus only on the ranking of the heuristics and neglect the
magnitude of the accuracies on different datasets. Small random variations in ranking
performance will cancel out over multiple datasets, but if there is a consistent small
advantage of one heuristic over the other this will be reflected in a substantial difference
in the average rank (the sum of individual ranks normalized by the number of datasets).
Finally, we also measured the size of the learned theories by the average number of
conditions.

5 The Search Strategy

This section describes our method for searching for the optimal parameter setting. Our
expectation was that for all heuristics, a plot of accuracy over the parameter value will
result in an inverse U-shape, i.e., there will be overfitting for small parameter values and
over-generalization for large parameter values, with a region of optimality inbetween.
Thus, we adopted a greedy search algorithm that continuously narrows down the region
of interest. First, it tests a wide range of intuitively appealing parameter settings to get an
idea of the general behavior of each of the five parametrized heuristics. The promising
parameters were further narrowed down until we had a single point that represents a
region of optimal performance.

Algorithm 1 shows the search procedure in detail. We start with a lower (a) and
upper (b) bound of the region of interest, and sample the space between them with a
certain interval width i. For measures with parameter space [0,∞) we used a logarith-
mic scale. For each sampled parameter value, we estimate its macro-averaged accuracy
on all tuning datasets, and, based on the obtained results, narrow down the values a, b,
and i.

Intuitively, the farther the lower border a and the upper border b of the interval are
away from the best parameter pbest, and the denser the increment, the better are our
chances to find the optimal parameter, but the higher are the computational demands.
As a compromise, we used the following approach for adjusting the values of these
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Fig. 2. Macro-averaged Accuracy over parameter values for the five parametrized heuristics

parameters:

a← pbest −
i

2
, b← pbest +

i

2
and i← i

10

This procedure is repeated until the accuracy does not increase significantly. As we
compare macro-averaged accuracy values over several datasets, we adopted a simple
approach that stops whenever the accuracy improvement falls below a threshold t =
0.001.

Obviously, the procedure is greedy and not guaranteed to find a global optimum. In
particular, there is a risk to miss the best parameter due to the fact that the global best
parameter may lie under or above the borders (if the best one so far is 1 for example,
the interval that would be searched is [0.5, 1.5]; if the global optimum is 0.4, it would
not be detected). Furthermore, we may miss a global optimum if it hides between two
apparently lower values. If the curve is smooth, these assumptions are justified, but
on real-world data we should not count on this. The second point can be addressed
by keeping a list of candidate parameters that are all refined and from which the best
one is selected. Hence it has to be defined how many candidates should be maintained.
Therefore it is necessary to introduce a threshold that discriminates between a normal
and a candidate parameter. It is not trivial to determine such a threshold. Due to this the
number of candidate parameters is limited to 3 (all experiments confirmed that this is
sufficient). The first problem could be addressed by re-searching the entire interval at a
finer resolution, but, for the sake of efficiency, we chose the more efficient version.

However, also note that it is not really important to find an absolute global optimum.
If we can identify a region that is likely to contain the best parameter for a wide variety
of datasets, this would already be sufficient for our purposes. We interpret the found
values as good representatives for optimal regions.
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6 Results

In this section we focus on the results of the search for optimal parameter values. We
will illustrate the average accuracy of the different heuristics under various parame-
ter settings, identify optimal parameters, compare their isometrics, and evaluate their
general validity.

6.1 Optimal parameters for the five heuristics

Our first goal was to obtain optimal parameter settings for the five heuristics. As dis-
cussed above, the found values are not meant to be interpreted as global optima, but as
representatives for regions of optimal performance. Figure 2 shows the obtained perfor-
mance curves.

Cost Measures Figures 2 (a) and (b) show the results for the two cost measures. Com-
pared to the other measures, these curves are comparably smooth, and optimal val-
ues could be identified quite easily. Optimizing only the consistency (i.e., minimizing
the number of negative examples without paying attention to the number of covered
positives) has a performance of close to 80%. Not surprisingly, this can be improved
considerably for increasing values of the parameters c and cr. The best performing
values were found at c = 0.437 (for the cost metric) and cr = 0.342 (for the rela-
tive cost metric). Further increasing these values will decrease performance because of
over-generalization. If the parameter approaches 1, there is a steep descent because op-
timizing only the number of covered examples without regard to the covered negatives
is, on its own, a very bad strategy.

It is interesting to interpret the found values. Note, for example, that weighted rela-
tive accuracy, which has been previously advocated as rule learning heuristic [11], cor-
responds to a value of cr = 0.5, equally weighting false positive rate and true positives
rate. Comparing this to the optimal region for this parameter, which is approximately
between 0.3 and 0.35, it can be clearly seen that it pays off to give a higher weight to
the true positive rate.

This is confirmed by the results on the cost metric. The optimal value c = 0.437
corresponds to a ratio of positive to negative examples of P/N = 1−c/c ≈ 1.29. In
reality, however, for most example sets P < N (for multi-class datasets we assume that
P is the number of examples in the largest class). Thus, positive examples have to be
given a higher weight than negative examples.

It is also interesting to compare the results of the absolute and relative cost mea-
sures: although, as we have stated above, the two are equivalent in the sense that for
each individual dataset, one can be transformed into each other by picking an appropri-
ate cost factor, the relative cost measure has a clearly better peak performance exceeding
85%. Thus, it seems to be quite important to incorporate the class distribution P/(P+N)

into the evaluation metric. This is also confirmed by the results of hm-estimate and hKlösgen.

Interestingly, the optimal value of c = 0.342 corresponds almost exactly to the micro-averaged
default accuracy of the largest class (for both tuning and validation datasets). We are still
investigating whether this is coincidental or not.
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Fig. 3. Isometrics of the best parameter settings

Klösgen measures Figure 2 (c) shows the results for the Klösgen measures. In the
region from 0.1 to 0.4 the accuracy increases continuously until it reaches a global op-
timum at 0.4323, which achieves an average accuracy of almost 85%. After the second
iteration of the SearchBestParameter algorithm, no better candidate parameters than
0.4 were found. The accuracy decreases again with parametrizations greater than 0.6.
As illustrated in Figure 1, the interval [0, 1] describes the trade-off between Precision
(ω = 0) and WRA (ω = 1), whereas values of ω > 1 trade off between WRA and
Coverage. The bad performance in this region (presumably due to over-generalization)
surprised us, because we originally expected that the behavior that is exhibited by the
Klösgen measure for ω = 2, namely to avoid low coverage regions, is preferable over
the version with ω = 0.5, which has a slight preference for these regions (cf. Figure 1).

F -measure For the F -measure the same interval as with the Klösgen measures is
of special interest (Figure 2 (d)). Already after the first iteration, the parameter 0.5
turned out to have the highest accuracy of 82.2904%. A better one could not be found
during the following iterations. After the second pass two other candidate parameters,
namely 0.493 with 84.1025% and 0.509 with 84.2606% were found. But both of them
could not be refined to achieve a higher accuracy and were therefore ignored. The main
difference between the Klösgen measures and the F -measure is that for the latter, the
accuracy has a steep descent at a very high parametrization of 1 · E9. At this point it
overgeneralizes in the same way as the Klösgen measures or the cost measures.

m-estimate The behavior of them-estimate differs from the other parametrized heuris-
tics in several ways. In particular, it proved to be more difficult to search. For example,
we can observe a small descent for low parameter settings (Figure 2 (e)). The main
problem was that the first iteration exhibited no clear tendencies, so the region in which
the best parameter should be could not be restricted.

As a consequence, we re-searched the interval [0, 35] with a smaller increment of 1
because all parameters greater than 35 got accuracies under 85.3% and we had to re-
strict the area of interest. After this second iteration there were 3 candidate parameters,
from which 14 achieves the greatest accuracy. After a second run, 23.5 became optimal,
which illustrates that it was necessary to maintain a list of candidate parameters. After a
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Table 1. Comparison of various results of the optimal parameter settings of the five heuristics
(identified by their parameters), other commonly used rule learning heuristics, and JRip (Ripper)
with and without pruning, sorted by their macro-averaged accuracy.

(a) on the 27 tuning datasets
average accuracy average

Heuristic Macro Micro Rank Size
m = 22.466 85.87 93.87 (1) 4.54 (1) 36.85 (4)
cr = 0.342 85.61 92.50 (6) 5.54 (4) 26.11 (3)
ω = 0.4323 84.82 93.62 (3) 5.28 (3) 48.26 (8)

JRip 84.45 93.80 (2) 5.12 (2) 16.93 (2)
β = 0.5 84.14 92.94 (5) 5.72 (5) 41.78 (6)
JRip-P 83.88 93.55 (4) 6.28 (6) 45.52 (7)

Correlation 83.68 92.39 (7) 7.17 (7) 37.48 (5)
WRA 82.87 90.43 (12) 7.80 (10) 14.22 (1)

c = 0.437 82.60 91.09 (11) 7.30 (8) 106.30 (12)
Precision 82.36 92.21 (9) 7.80 (10) 101.63 (11)
Laplace 82.28 92.26 (8) 7.31 (9) 91.81 (10)

Accuracy 82.24 91.31 (10) 8.11 (12) 85.93 (9)

(b) on the 30 validation datasets
average accuracy average

Heuristic Macro Micro Rank Size
JRip 78.98 82.42 (1) 4.72 (1) 12.20 (2)

cr = 0.342 78.87 81.80 (3) 5.28 (3) 25.30 (3)
m = 22.466 78.67 81.72 (4) 4.88 (2) 46.33 (4)

JRip-P 78.50 82.04 (2) 5.38 (4) 49.80 (6)
ω = 0.4323 78.46 81.33 (6) 5.67 (6) 61.83 (8)
β = 0.5 78.12 81.52 (5) 5.43 (5) 51.57 (7)

Correlation 77.55 80.91 (7) 7.23 (8) 47.33 (5)
Laplace 76.87 79.76 (8) 7.08 (7) 117.00 (10)

Precision 76.22 79.53 (9) 7.83 (10) 128.37 (12)
c = 0.437 76.11 78.93 (11) 8.15 (11) 122.87 (11)

WRA 75.82 79.35 (10) 7.82 (9) 12.00 (1)
Accuracy 75.65 78.47 (12) 8.52 (12) 99.13 (9)

few more iterations, we found the optimal parameter at 22.466. The achieved accuracy
of 85.87% was the optimum among all heuristics.

6.2 Behavior of the optimal heuristics

In this section, we compare the parameters which have been found for the five heuris-
tics (cf. also Table 1). In terms of macro-averaged accuracy, the m-estimate and the
relative cost measure clearly outperformed the other parametrized heuristics, as well as
a few standard heuristics, which we had also briefly mentioned in section 3.3). Interest-
ingly, the relative cost measure performs much worse with respect to micro-averaged
accuracy, indicating that it performs rather well on small datasets, but worse on larger
datasets. These two heuristics also outperform JRIP (the WEKA-implementation of
RIPPER [3]) on the tuning datasets, but, as we will see further below, this performance
gain does not quite carry over to new, independent datasets.

Figure 3 shows the isometrics of the best parameter settings of the m-estimate,
the F -measure, and the Klösgen-measure. Interestingly, we can see that—within the
confinements of their different functionals—all measures try to implement a very sim-
ilar heuristic. Minor differences are detectable in the low coverage region, where the
F -measure is necessarily parallel to the N -axis and the isometrics of the Klösgen mea-
sures are slightly bended.

6.3 Validity of the results

In order to make sure that our results are not only due to overfitting of the 27 tuning
datasets, we also evaluated the found parameter values on 30 new validation datasets.

Because of space limitations, we omit the corresponding figures for the cost metrics, but they
are just parallel lines with slopes that are determined by their respective optimal parameter
values (and, in the case of the relative cost measure, also by the class distribution).
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Fig. 4. Comparison of all classifiers against each other with the Nemenyi test. Groups of classi-
fiers that are not significantly different (at p = 0.05) are connected.

The results are summarized in Table 1 for both the tuning datasets (left) and the test
datasets (right). The numbers in brackets describe the rank of each heuristic according
to the measure of the respective column.

Qualitatively, we can see that the relative performance of the heuristics in compar-
ison to each other, and in comparison to the standard heuristics does not change much,
with the exception of the considerably better performance of JRIP, which indicates that
some amount of overfitting has happened in the optimization phase. However, the per-
formance of the best metrics is still comparable to the performance of JRIP, although
the latter achieves this performance with much smaller rule sizes.

Figure 4 displays a comparison of all classifiers done with the Nemenyi test sug-
gested in [4]. All tuned heuristics (except the cost measure) outperform the standard
heuristics which is indicated by the large gap between them. The Klösgen measure
is the only parametrized heuristic which is not significantly better than the Accuracy
heuristic.

7 Conclusions

The experimental study reported in this paper has provided several important insights
into the behavior of greedy inductive rule learning algorithms. First, we have deter-
mined suitable default values for commonly used parametrized evaluation metrics such
as them-estimate. This is of considerable practical importance, as we showed that these
new values outperformed conventional search heuristics and performed comparably to
the RIPPER rule learning algorithm. Second, we found that heuristics which take the
class distribution into account (e.g., by evaluate relative coverage instead of absolute
coverage) outperform heuristics that ignore the class distribution (e.g., the F -measure
which trades off recall and precision). Third, however, we found that for a good overall
performance, it is necessary to weight the true positive rate more heavily than the false
positive rate. This is most obvious in the optimal parameter value for the relative cost
metric, but can also be observed in other well-performing heuristics, whose isometrics
have a very steep slope in the important regions. Last but not least, we think that this has
been the most exhaustive experimental comparison of different rule learning heuristics
to date, yielding new insights into their comparative performance.

However, our results also have their limitations. For example, we have only evalu-
ated overall performance over a wide variety of datasets. Obviously, we can expect a
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better performance if the parameter values are tuned to each individual dataset. We think
that the good performance of RIPPER is due to the flexibility of post-pruning, which al-
lows to adjust the level of generality of a rule to the characteristic of a particular dataset.
We have deliberately ignored the possibility of pruning for this set of experiments, be-
cause our goal was to gain a principal understanding of what constitutes a good rule
evaluation metric for separate-and-conquer learning. It is quite reasonable to expect
that pruning strategies could further improve this performance. In particular, it can be
expected that the performance of parameter values that result in slight overfitting can
be considerably improved by pruning (whereas pruning can clearly not help in the case
of over-generalization). We are currently investigating this issue.
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