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Abstract

Forgotten attachments of e-mail message are a common and obnoxious problem. Several E-mail readers provide plugins
that attempt to tackle this problem by trying to guess whether a message needs an attachment and warn the user in
case s/he does not attach a file to such a message. However, these approaches essentially only work with a fixed list of
keywords, which trigger such a warning whenever they occur in a message. In this paper, we try conventional machine
learning techniques, which have been previously shown to work well for related problems such as spam mail filtering, on
this new problem. Our results show that they work very well, clearly outperforming simple keyword-based approaches.
The software is available as plugin for the Thunderbird e-mail reader.



1 Introduction

E-mail messages pose numerous challenges for machine learning and text classification methods (Brutlag and Meek,
2000). They are rather short, quite heterogeneous, and originate from multiple authors. One of the earliest works on
classifying E-mail messages was the approach by (Cohen, 1996), who showed that a rule learner can learn to categorize
E-mail messages rather well. Similar ideas have subsequently been used in several E-mail assistants (Payne and Edwards,
1997; Rennie, 2000; Crawford et al., 2002). Interest in machine learning methods for E-mail classification grew con-
siderably when it was recognized that they may form an adequate tool for fighting spam mails (Goodman et al., 2005;
Fawcett, 2003). One of the widest used algorithms in this domain is a probabilistic algorithm introduced by Graham;
2003), which forms the basis of the trainable spam filter used in Mozilla web browsers, or is used as a component in the
SpamAssassin spam filtering package.

Another obnoxious problem in E-mail processing is that users frequently forget to attach documents to their message
although they actually had intended to do so. Several E-mail readers provide plugins that attempt to warn the user in
cases where it seems apparent that s/he forgot to attach a file. Such plugins include Forgotten Attachment Detector12 and
Attachment Reminder for Gmail, Attachment Reminder3 and Check and Send4 for Thunderbird, or Forgotten Attachment
Detector5 for MS Outlook. All these plugins work in a similar way. Essentially, they all maintain a configurable list of
keywords (such as attach, attachment, file, . . . ), and, after the user pressed “Send ”, check each outgoing message for the
appearance of one of these keywords in the message. If one of the keywords appears in a message and the message does
not have an attachment, a pop-up window warns the user that an attachment might be missing.

We envision a solution to this problem via machine learning techniques, which can be trained on a corpus of a user’s
E-mail messages. The training information is the text of the messages, and the training signal is whether the message
had an attachment or not. The trained classifier will then emit a warning to the user whenever it thinks that the text of
the message indicates that the user had intended to attach a document, but failed to so.

The key advantage of a machine-learning solution is, of course, that the system can adapt to different users. In fact, our
results show that our best solution, a combination between Naïve Bayes and Graham’s algorithm, achieves a uniformly
strong performance across five different users. A possible disadvantage is that its performance in the early training phases
may be inferior to a conventional keyword-based approach. Although we did not investigate this more closely, we just
note that this problem could be alleviated either by a good general initialization of the classifier (e.g., one trained on
several users) or with a gradual shift from a keyword-based classifier to the trainable system.

Automated recognition of missing attachments is an interesting challenge, because the above-mentioned methods all
focus on classifying the contents of an E-mail into a set of topics (or E-mail folders). Even spam mail filtering works
that way, because the topic of spam E-mails is typically considerably different from the topics of a user’s regular E-
mails. Messages with and without attachments can be found in practically all possible topics, hence the vocabularies
in the attachment and no-attachment classes will be much more similar to each other than for content-based e-mail
classification problems.

The result of this work is a plugin for the Thunderbird E-mail classifier that can be trained to recognize E-mail messages
with missing attachments. The latest version of the plugin can be downloaded from http://www.attachmentchecker.
de. In this paper, we describe this system and evaluate it on several corpora, also in comparison with a simple keyword-
based approach such as those mentioned above. We will start with a brief formal description of the problem (Section 2)
and then proceed to describe the four algorithms that we implemented in detail (Section 3). Sections 4 and 5 then
describe our experiments and their results, before we conclude (Section 6).

1 http://mail.google.com/support/bin/answer.py?hl=en&answer=143085
2 https://addons.mozilla.org/de/thunderbird/addon/5759
3 https://addons.mozilla.org/de/thunderbird/addon/5759
4 https://addons.mozilla.org/de/thunderbird/addon/2281
5 http://www.officelabs.com/projects/forgottenattachmentdetector/
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2 Problem Description

Our application scenario is the following: Every time the user sends a message, the message is not immediately sent to
the mail server, but first passed to a learning system (realized with a separate server process). If the message contains an
attachment, the learner processes it as a new training example and then sends it off to the mail server right away. If the
message does not contain an attachment, it is first passed to the classifier to ask whether it should have an attachment.
If the classifier decides “no”, the message is again used for training and then sent to the mail server, if the classifier
says “yes”, a pop-up window is generated and asks the user whether s/he would like to add an attachment or not. The
message together with the user’s final decision is then used for training and sent to the mail server.

Thus, from the point of view of the learner, we assume an incoming stream of E-mail messages Mi , which have to
be classified into the attachment-class a and the class r of regular e-mails. After each message M has been processed,
the learner receives the correct label c(M) for the message. Strictly speaking, in the case when the e-mail is sent off
by the user without an attachment and the classifier agrees that it should not contain a message, its label may not be
correct because both the user and the classifier might have overlooked that the message should contain an attachment.
We currently simply ignore this problem.

At any time t, the learner thus has a pre-classified set of training examples Di = {M1, . . . Mi−1}. The task of the learner
is to automatically derive a classifier from the dataset Di , which is able to predict a class c̃(M) for a new message M . The
learning problem is incremental, i.e., the classifier can be adapted after a new message has arrived instead of having to
re-train the classifier after every change in the dataset Di .

In our evaluation, we will also work with static datasets, in which case we simply omit the subscript i. Each dataset D
can be divided into two sets D = Da ∪ Dr , where Da is the set of messages that contain an attachment and Dr is the set of
regular messages, i.e., messages that do not contain an attachment. Each of these sets may also be considered as a large
meta-document, i.e., A=

⋃

M∈Da
M is the hypothetical message that consists of the concatenation of all e-mail messages

with an attachment, and R=
⋃

M∈Dr
M is the concatenation of all messages without an attachment. The number of times

a given word t occurs in these meta-documents is nt,A (the number of times that the word t occurs in A) and nt,R (the
number of times that the word t occurs in R). We defined a word t simply as any consecutive character strings which
entirely consist of letters and hyphens.

As all our learners essentially only use the frequency counts nt,A and nt,R as the basic information for deriving their
predictions, their implementation in an on-line learning scenario, where we have a continuous incoming stream of mes-
sages, was quite straight-forward. Essentially, one only has to consider that the meta documents A and R are continuously
growing and their associated term counts have to be adapted on-line.
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3 Algorithms

In this section, we briefly recapitulate the learning algorithms with which experimented. We start with a simple keyword
matcher, which is used in similar form in most publicly available attachment checking plugins (Section 3.1), and also
discuss a simple method for automatically generating a list of keywords. We then proceed with the three learning
methods, namely a Naïve Bayes classifier (Section 3.2), Paul Graham’s spam mail filtering algorithm (Section 3.3), and a
straight-forward combination of both (Section 3.4).

3.1 Keyword Matching

A keyword matcher maintains a list of keywords K, which are indicative of an E-mail that requires an attachment. The
algorithm then simply walks through all words t in the e-mail message M , and whenever one of the words also occurs in
K, the keyword matcher predicts class a. If none of the words of the message occur in K, it predicts class n.

c̃(M) =

¨

a if ∃t ∈ M : t ∈ K
r if ∀t ∈ M : t 6∈ K

(3.1)

We worked with two versions of this simple algorithm, which use different keyword lists K, one that uses a fixed, user-
defined keyword list, and one that is able to automatically learn its keywords from messages with known classifications:

Static Keywords
This approach uses a fixed, immutable list of keywords. As we were working with German-text e-mails, we used the
following keyword list

K = {’anhang’, ’anhänge’, ’datei’, ’dateien’, ’fotos’, ’version’, ’versionen’, ’entwurf’, ’entwürfe’, ’anbei’.} (3.2)

Dynamic Keywords
This approach adapts the list of keywords to the corpus at hand. The key idea is that a word is promoted to a keyword for
the attachment class if it occurs k times as frequently in class a and than in class r, where k is a user-settable parameter.

More formally, this approach tries to estimate the probabilities P(t | a) and P(t | r) that the word t occurs in class a and
r respectively. The values P(t | a) and P(t | r) can be estimated with their relative frequencies in the meta documents A
and R, i.e.,

P(t|a) =
nt,A

|A|
, P(t|r) =

nt,R

|R|
. (3.3)

Given these estimates, the keyword list is defined as

K =
�

t ∈ A :
P(t|a)
P(t|r)

> k
�

(3.4)

The keyword list can be estimated in batch (from a given training corpus) or dynamically adapted with the stream of
incoming E-mails.

3.2 Naïve Bayes

The Naïve Bayes classifier is known for its simplicity and computational efficiency. It also can be trained incrementally,
and therefore seems to be a very good candidate for solving our problem.

Its key idea is that for an e-mail message M , the Naïve Bayes classifier estimates the probabilities P(a |M) that the
message should contain an attachment and P(r |M) = 1− P(a |M) that the message should not contain an attachment.
Based on these probabilities, the classifier then predicts one of the two classes. Typically it will pick the one with the
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larger estimated probability, i.e., it will predict a if P(a |M) > P(r |M) and r otherwise. More generally, one can define a
decision threshold d, and predict class a if the probability P(a |M) is at least d times the probability P(a |M).

c̃(M) =







a if P(a|M)
P(r|M) > d

r if P(a|M)
P(r|M) ≤ d

(3.5)

For estimating the probability P(a|M), the Naïve Bayes classifier uses Bayes’ law:

P(a|M) =
P(M |a) · P(a)

P(M)
, (3.6)

where

• P(a) is the a priori probability for a message to have an attachment, i.e., the probability that a message has an
attachment without considering the message text

• P(M) is the a priori probability for an e-mail text M , i.e., the probability, that a given e-mail message text M can
be observed independent of whether it has an attachment or not

• P(M |a) is the probability that a given e-mail text M would occur in the class of e-mails with an attachment

The first term, P(a), can be easily estimated from the data with the percentage of messages that contain an attachment.
P(r) can be estimated analogously, i.e.,

P(a) =
|Da|
|D|

, P(r) =
|Dr |
|D|
= 1− P(a) (3.7)

The denominator of equation (3.6), P(M), can be considered as a normalizing constant, i.e.,

P(M) = P(M |a) · P(a) + P(M |r) · P(r). (3.8)

The word-extraction divides e-mails into single words t. The assumption that the occurrence of a word in a message
only depends on the class of the message (with or without attachment) but not on the presence of other words in the
message, allows the following simplification

P(M |a) =
∏

t∈M

P(t|a) (3.9)

where P(t | a) is the probability that a word t occurs in the documents with attachments. P(M |r) is computed analogously.
The values P(t | a) and P(t | r) are estimated as described in the previous section. Combining all these, yields the following
estimate nb(M) for the probability P(a|M) that an e-mail M should have an attachment

nb(M) =
P(a) ·
∑

t∈M P(t | a)
P(a) ·
∑

t∈M P(t | a) + P(r) ·
∑

t∈M P(r | a)
≈ P(a|M) (3.10)

It should be noted that the assumption underlying (3.9), the so-called Naïve Bayes assumption, is typically not justified.
However, it can be argued that while making this assumption will yield bad probability estimates, it will have a much
lesser impact on the performance of the classifier that is based on these estimates (Domingos and Pazzani, 1997).
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3.3 Graham’s Algorithm

The algorithm of Graham; 2003) has been specifically developed and tuned for dealing with the problem of spam recog-
nition. Several of its features are specifically targeted towards this problem, such as its focus on using only a few
significant words, or the use of different weights for words in spam and regular E-mail messages. The algorithm has been
quite successful and forms the basis of many anti-spam packages, such as Mozilla’s spam mail filter or the SpamAssassin
software.

In our work, we adapted the algorithm for use of recognizing e-mails that require attachments. The key component
of the algorithm are two heuristic weights that are assigned to each term in an e-mail message, one for the attachment
class and one for the class of regular e-mails

wt,a =min
�

1, ca ·
nt,A

|Da|

�

wt,r =min
�

1, cr ·
nt,R

|Dr |

�

(3.11)

In both cases, we calculate the proportion between the numbers of words in the sets A and R, and the numbers of
e-mails in the respective classes.1 For spam mail filtering, the weights ca and cr are set according to a ratio of 1:2, i.e.,
the occurrence of non-spam words are weighted twice as heavily as the occurrence of spam words. For the problem of
e-mail attachment recognition, we set both weights ca = cr = 1.

The two weights (3.11) are then combined into an overall weight wt , which is an indicator how often a word t occurs
in a e-mail with respectively in a e-mail without attachment. The higher the value or wt , the larger the probability that a
word is an indicator for the attachment-class.

wt =max

�

N P,min

�

AP,
wt,a

wt,a +wt,r

��

. (3.12)

The values AP and NP are set by the user. N P specifies the lowest value, which a word can have, if it is in the
noattachment-class. Analogous specifies AP the highest value, which a word can have, if it is in the attachment-class.
Because that 0< N P < 1, 0< AP < 1 and N P < AP, the value of wt is between 0 and 1.

Note that if we ignore all the minima and maxima in (3.11) and (3.12), and furthermore assume that the number
of e-mail messages with and without attachments are approximately equal, then wt essentially estimates the probability
that a given word occurs rather in class a than in class r:

P(a | t) =
nt,A

nt,A+ nt,R
≈

nt,A

|Da |
nt,A

|Da |
+ nt,R

|Dr |

For a given e-mail message M , Graham’s algorithm selects the 15 words t i whose weights wi are most different from
0.5. These are then combined into a score g(M) for the e-mail message M

g(M) =

∏15
i=1 wi

∏15
i=1 wi +
∏15

i=1(1−wi)
(3.13)

.
To decide if M should have an attachment the score g(M) is compared with a threshold score g.

c̃(M) =

¨

a if g(M)> g
r if g(M)≤ g

(3.14)

We used much lower thresholds g than typically used for spam recognition, because false positives are not as problem-
atic in the attachment problem as they are in spam recognition.

1 It may appear a bit strange that the numerator counts words, while the denominator counts documents, but Graham’s approach is entirely
heuristic.
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3.4 Combined Algorithm

Naïve Bayes and Graham’s algorithm compute different scores for recognizing attachments, as we will also see in the
experimental evaluation. Thus, it makes sense to try to combine these two in the hope to get the best of both approaches.

Both algorithms are evaluated independently, and their respective scores nb(M) (3.10) and g(M) (3.13) are computed.
Both are in the range [0,1] and can be combined with a simple weighted average

s(M) =
v · nb(M) + g(M)

v+ 1
(3.15)

where v is a factor that indicates the relative importance of the two different methods. Unless otherwise mentioned, we
use the value v = 2 in our experiments, i.e., the Naive Bayes prediction is considered to be twice as important as the
prediction of Graham’s algorithm.

Again, a message M is predicted as belonging to class a if the score s(M) exceeds a threshold score s.

c̃(M) =

¨

a if s(M)> s
r if s(M)≤ s

(3.16)
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4 Experimental Setup

We implemented the methods described in the previous section as a plugin for the Thunderbird mail reader. In order to
determine the best performing configuration, we experimentally compared the algorithms on several mail collections. In
this section, we describe the experimental setup, the next section will present the results from this evaluation.

4.1 Algorithms

We implemented all of the algorithms in the previous section, and also included a simple benchmark algorithms. In the
following, we list all six algorithms and also give the parameter settings that were used (unless mentioned otherwise).

Never Attach: the default classifier, which always predicts the majority class, i.e., it always assumes that a messages will
not require an attachment.

Static Keywords: the keyword-matching algorithm using the fixed set of keywords (3.2). These keywords were manually
picked by the authors.

Dynamic Keywords: the keyword-matching algorithm using a list of keywords that has been automatically generated
from the training data. We used the frequency threshold k = 2, i.e., keywords must occur at least twice as likely in
class a than in class r.

Naive Bayes: with a threshold of d = 0.5.

Graham’s algorithm: with a threshold of g = 0.51

Combined algorithm: with value ν = 2 (Naive Bayes twice important as Graham) and a threshold of s = 0.34.

4.2 Evaluation

We compare the performance of the algorithms using accuracy, precision and recall, which are commonly used for
evaluating the performance of information retrieval and text classification algorithms (Manning et al., 2008). These
performance measures can be computed from a 2x2 confusion matrix with the following entries:

• true positive — e-mail with attachment, which is classified correctly,

• false positive — e-mail without attachment, which is misclassified,

• true negative — e-mail without attachment, which is classified correctly and

• false negative — e-mail with attachment, which is misclassified.

Accuracy describes the proportion of correctly classified e-mails in all e-mails:

accuracy=
true positive+ true negative

true positive+ true negative+ false negative+ false positive
.

Precision is the fraction of correctly recognized e-mails in all e-mails that have been predicted to have an attachment:

precision=
true positive

true positive+ false positive
.

Recall is the fraction of e-mails with attachment that have been correctly predicted:

recall=
true positive

true positive+ false negative
.
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In order to summarize both measures into a single number, we also show results for the F -measure, the harmonic
mean of recall and precision.

F =
2 · recall · precision
recall+ precision

In addition, we also investigated the sensitivity of a method’s parameters by trying several values and plotting the
results in an ROC curve (Provost and Fawcett, 2001). A ROC curve plots the true positive rate over the false positive rate
for various different versions of a classifier. These can be obtained by sorting all predictions according to the predicted
score value, and then trying several (or all) possible thresholds to break the list into the classes a and r.

We also report the AUC, the area under the ROC curve, which essentially is the probability that an arbitrarily selected
message with attachment is ranked before an arbitrarily selected message without attachment. For more details on the
use of ROC analysis for evaluating machine learning classifiers we refer to (Fawcett, 2006).

For estimating these values from the training data, we performed a 10-fold cross validation

4.3 Datasets

We could not find any suitably publicly available datasets for our experiments. For example, from a big publicly available
corpus of E-mails, the Enron corpus (Klimt and Yang, 2004), all attachments had been removed prior to publication.
Moreover, private e-mail-user do not want to give away private e-mails. Eventually, we found the following datasets to
evaluate the algorithms:

1. dataset with 453 e-mails in German language, of which 74 e-mails have at least one attachment,

2. dataset with 531 e-mails in German language, of which 113 e-mails have at least one attachment,

3. dataset with 2245 e-mails in German language, of which 732 e-mails have at least one attachment.

For these three datasets, the full text of the e-mails was available. Only these datasets were used for full experimen-
tation with the algorithms, i.e., the reported best-performing parameters of the algorithms were only tuned on these
datasets.

Two additional datasets — so called control datasets — were used for evaluation only:

4. dataset with 282 e-mail in German language, of which 70 e-mail have at least one attachment,

5. dataset with 922 e-mail in German language, of which 96 e-mail have at least one attachment.

For these datasets, we did not have off-line access to the body of E-mails, but the algorithms were evaluated in the user’s
client browser, and only the results were recorded in order to protect the user’s privacy. Thus, we were not able to tune
the parameters of the algorithms or optimize their performance in any way, so that the results on these two datasets can
be considered as a reasonable estimate of the algorithms performance in a real setting. The only difference to a practical
setting is that, for simplicity, the evaluation is still performed via 10-fold cross-validation of the user’s existing mail and
not in an true on-line setting.
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5 Results

This sections describes our results. We will first focus on predictive accuracy (Section 5.1), then look at recall and
precision (Section 5.2), and finally perform an ROC analysis (Section 5.3).

5.1 Accuracy

Table 5.1 shows the results of the algorithms on the first three datasets. Both versions of the keyword matching algorithm
are unable to significantly outperform the default Never attach strategy. On the first dataset, they even perform even
worse, which could indicate that they pick up a systematic bias. However, one should also note this dataset only contains
7–8 documents with attachments in each of the test sets of the 10-fold cross-validation. The dynamic strategy, which
automatically chooses its keywords, performs somewhat better than the fixed strategy, but both versions do not provide
much leverage to the user.

Algorithm Dataset 1 Dataset 2 Dataset 3

Never Attach 83.66% — 78.68% — 67.32% —
Static keywords 76.38% (−7.28%) 79.66% (+0.98%) 71.00% (+3.68%)
Dynamic keywords (2) 78.81% (−4.85%) 80.04% (+1.36%) 69.53% (+2.21%)
Graham (0.51) 87.64% (+3.98%) 90.21% (+11.53%) 85.84% (+18.52%)
Naïve Bayes (0.5) 87.64% (+3.98%) 89.64% (+10.96%) 88.95% (+21.63%)
Combined (2:1,0.34) 93.82% (+10.16%) 90.77% (+12.09%) 88.55% (+21.23%)

Table 5.1: Predictive accuracy of the learning algorithms (absolute and in comparison to the Never Attach benchmark).

Paul Graham’s algorithm and the Naïve Bayes classifier, on the other hand, exhibit a similar performance and are both
consistently better than the three simple benchmarks. However, their predictions are still sufficiently diverse so that
the combined algorithm is able to outperform both of them, most notably in Dataset 1, where it seems to be able to
considerably reduce the variance resulting from the comparably low example numbers. On the third dataset, it is a little
bit behind the Naïve Bayes algorithm, but it is obvious that it has been able to correct the comparably bad performance
of Graham’s algorithm on this dataset.

In comparison to the Never Attach strategy, which does not require any learning, but simply predicts the majority class
(r), the best algorithms achieve an improvement in accuracy of about 20% (numbers shown in brackets). These were
obtained on Dataset 3, where the number and fraction of messages with attachments is considerably higher than in the
other two datasets, which could indicate that the learners have learned better models from the larger datasets.

Accuracy Dataset 4 Dataset 5

Never attach 75.18% — 89.59% —
Static keywords 65.96% (−9.22%) 82.21% (−7.38%)
Dynamic keywords (2) 68.79% (−6.39%) 84.06% (−5.53%)
Graham (0.51) 84.40% (+9.22%) 90.67% (+1.08%)
Naïve Bayes (0.5) 78.01% (+2.83%) 90.78% (+1.19%)
Combined (2:1,0.34) 95.04% (+19.86%) 96.10% (+6.51%)

Table 5.2: Predictive Accuracy of the learning algorithms on the control datasets (absolute and in comparison to the
Never Attach benchmark).

To get independent results the algorithms were tested on the two control datasets. In principle, the trend of the first
three datasets is confirmed. The Combined algorithm performs best, followed by Naïve Bayes and Graham’s algorithm,
and the three simple algorithms perform worst. Somewhat surprising is that on these datasets the trend from Dataset 1,
namely that the keyword algorithms perform worse than the Never Attach strategy, is strongly confirmed on these
datasets. This clearly indicates that something is going wrong, presumably the keywords are too unreliable to discriminate
between the two classes and consequently trigger too many alarms.
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For all accuracy values, it is not clear how the improvement of the detection was achieved. The increase may be caused
by triggering fewer but more reliable alarms, or, conversely, by triggering more alarms at the expense of a few more false
alarms. We will investigate this in more detail in the next sections.

5.2 Precision/Recall

Because the accuracy results do not allow conclusions about the reasons for the different results of the algorithms, we also
analyzed the results with precision and recall in order to get a deeper understanding of the behavior of the algorithms.
As the No Attach strategy never predicts class a, its recall is 0, and its precision is undefined. Hence we do not further
consider it in this section. Figure 5.3 shows the results of the remaining five algorithms on the first three datasets.

Dataset 1 Dataset 2 Dataset 3
Algorithm Prec. Recall F Prec. Recall F Prec. Recall F

Static Keywords 23.81% 20.27% 21.90% 52.29% 50.44% 51.35% 62.54% 27.60% 38.30%
Dynamic Keywords (2) 78.81% 21.05% 33.23% 52.76% 59.29% 55.83% 53.49% 50.27% 51.83%
Graham (0.51) 70.45% 41.89% 52.54% 82.80% 68.14% 74.76% 95.00% 59.70% 73.23%
Naïve Bayes (0.5) 62.50% 60.81% 61.64% 75.00% 76.99% 75.98% 85.28% 79.92% 82.51%
Combined (2:1,0.34) 76.14% 90.54% 82.72% 76.67% 81.42% 78.97% 88.00% 75.14% 81.06%

Table 5.3: Precision, recall, and F-measure of the learning algorithms

The Static Keywords approach shows a rather poor performance, in particular with respect to recall. This shows that
the fixed list of keywords does not fire very often and does not classify many e-mails into the attachment class. However,
it is also rather poor with respect to precision, which means that even if the keywords trigger an alarm, it is still quite
frequently a false alarm. Only on the third dataset one has the impression that the keywords fit o.k., but still rather poor
in comparison to the other approaches.

The Dynamic Keywords approach shows somewhat better results. Interestingly, there is not clear trend in whether
the automated keyword selection tends to improve precision more than recall or the other way around. On the first
dataset, it really boosted precision to the best performance of all algorithms, but maintained a very poor recall, i.e., it
selected too few keywords, but those were very reliable. On the third dataset, the opposite seemed to happen, namely
that the automatic keyword selection greatly improved recall, but at the expense of precision. Again, it might be that the
comparably low number of the attachment documents in dataset 1 is responsible for this difference.

Naïve Bayes and Graham’s algorithm perform considerably better, clearly topping the two keyword-based approaches
in both recall and precision (with the exception of the precision of the dynamic keywords on dataset 1). However, it
also becomes apparent that they work quite differently: Graham’s algorithm is much more precise but produces a much
lower number of warnings, whereas Naïve Bayes gives more alarms but is also less precise in its alarms. Even though our
version of Graham’s algorithm used a much lower threshold than is used for spam filtering, Graham’s algorithm is still
much more conservative in its predictions.

Dataset 4 Dataset 5
Algorithm Prec. Recall F Prec. Recall F

Static Keywords 25.93% 20.00% 22.58% 27.92% 44.79% 34.40%
Dynamic Keywords (2) 37.14% 37.14% 37.14% 33.33% 53.13% 40.96%
Graham (0.51) 82.50% 47.14% 60.00% 69.23% 18.75% 29.51%
Naïve Bayes (0.5) 56.25% 51.43% 53.73% 58.73% 38.54% 46.54%
Combined (2:1,0.34) 85.00% 97.14% 90.67% 84.91% 80.21% 82.49%

Table 5.4: Precision and recall of the learning algorithms on the control datasets

The Combined algorithm always provides good precision and recall values. They are typically among the top two of
all results, and no algorithm beats them in both dimensions. This can also be seen when looking at the F-measures, where
it is only beaten once on dataset 3 (which we already had observed and discussed above for the accuracy results). In
general, it seems that the combined algorithm compensates the weaknesses of each of its constituent algorithms, never
produces significantly worse results, but sometimes a considerably better performance. For example, on Dataset 1, the
F -measure of the combined method is 20% higher than Naïve Bayes and 30% higher than Graham’s algorithm. This
behavior can be explained by the fact that Graham’s algorithm and Naïve Bayes classify different e-mails as attachments.
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Figure 5.1: Recall/Precision diagram – Dataset 2
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Figure 5.2: Recall/Precision diagram – Dataset 4

If one of the algorithms found an attachment-e-mail with high probability, this e-mail is reported. If the probability of the
algorithms is on the borderline, the algorithm decides now with the help of the other if it is an attachment-e-mail.

All of the above findings are, again, confirmed on the control datasets, which are shown in Table 5.4.
Finally, Figures 5.1 and 5.2 show two (non-interpolated) recall and precision diagrams for datasets 2 and 4, which are

generated by sorting all predictions according to the predicted score (similar to ROC curves, which are described in the
next section) and computing and plotting the recall and precision values after each possible threshold. In both cases, one
can see that the combined algorithm outperforms the other two in particular at higher recall levels, which indicates that
the corrective effect is much higher in regions where the scores returned by Naïve Bayes and Graham’s algorithm are less
reliable.

5.3 ROC-Curve/AUC

So far, we primarily evaluated the classification performance of the methods with respect to the thresholds that we
found worked best for our problems. However, it is of course also interesting to evaluate the quality of the scores nb(M)
(3.10), g(M) (3.13) and s(M) (3.15) independent of the selected thresholds. For the accuracy, recall and precision results
presented in the last sections (except for the curves in Figures 5.1 and 5.2), these scores were thresholded in order to
make a final prediction for attachment or no-attachment, and the presented results crucially depend on this parameter.
ROC analysis allows to abstract from concrete values of this threshold.

In general, a good scoring function should give higher scores to messages with attachment than to messages without
attachments. This can be most clearly evaluated with ROC curves. In an ROC curve (cf. also Section 4.2), the diagonal
between the lower left corner and the upper right corner represents a random ordering of the predictions. the farther
the curve moves away from the diagonal, the better is the sorting of the prediction into the two classes. The ideal case is
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Figure 5.3: ROC-curves for the 10 folds and average curve
for Naive Bayes on Dataset 4
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Figure 5.4: ROC-curves for the 10 folds and average curve
for Dynamic Keywords on Dataset 4
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Figure 5.5: ROC-curves for Dataset 1
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Figure 5.6: ROC-curves for Dataset 4

when all messages with attachments receive a higher score than all messages without attachments. In this case, the ROC
curve starts at the lower left corner (0,0), goes straight up to the upper left corner (0,1), and then continues straight to
the upper right corner (1,1) of the ROC space.

For comparison, we also show the results of the keyword classifiers, even though these do not return any scores. Here,
the ROC curve consist only of a three points. The middle point represents the true positive and false positive rates of the
classifier. The curve is formed by connecting this point to (0,0) and (1,1).

All shown curves are average curves over all 10 folds. The averages were formed by via an 11-point vertical average
(Fawcett, 2006). This means that the average curve consists of measurements for a false positive rate of 0, 0.1, . . . , 0.9,
1.0, which are the average of the point values in the individual curves. Figures 5.3 and 5.4 illustrate this by showing the
curves of the individual folds and (with a dotted line) the resulting average curve for the Naïve Bayes and the Dynamic
Keyword classifiers. In Figure 5.3, we can see that the individual curves only have seven different levels on the T PR-axis.
This is because each of the ten folds only contained seven of the 70 e-mails with an attachment. In Figure 5.4, we can
clearly see the three-point curves of the keyword-based classifier. Each of the angles represents one of the 10 classifier
points, the dotted line, again, shows the average performance.

Figures 5.5 and 5.6 show the AUC curves for Datasets 1 and 4. Essentially, they reflect the results that we have obtained
so far: a very good separation with the combined algorithm is possible, the worst separation is achieved with the two
keyword-based algorithms. In particular on Dataset 1 (Figure 5.5) they are both very close to a random classification. On
Dataset 4, the Dynamic Keywords approach is a little bit better, but still has a very bad performance. All three learning
algorithms exhibit a much stronger performance and are clearly above the diagonal, with the Combined algorithm
dominating the other two.

The Naïve Bayes algorithm in Figure 5.6 shows a worse than random performance in the upper left region. Essentially
this means that some of the attachment e-mails have been ranked very low, i.e., the algorithm was quite certain that they
do not require attachments. In that area, the predictions would be better if they were reversed. As can be seen from
Figure 5.3, this did not happen in all of the folds of the cross-validation.

The area under these ROC curves is a good measure for summarizing the ranking performance of the algorithms.
Essentially, it estimates the probability that an e-mail with attachment is ranked before an e-mail without attachment.
The AUC values of all algorithms are shown in Table 5.5. They confirm again the order of the algorithms that we have
already observed. The keyword-based algorithms are only slightly better than random, while Graham’s algorithm and
Naïve Bayes exhibit a reasonable performance in about the same range (with the exception of the outlier Dataset 4 for
Naïve Bayes that we have discussed above). The Combined algorithm shows a very strong performance. On all five
datasets, the probability that it ranks an e-mail without attachment before an e-mail with attachment was less then 5%.

AUC Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

Static Keywords 0.54 0.69 0.60 0.51 0.66
Dynamic Keywords 0.51 0.68 0.81 0.58 0.70
Graham 0.90 0.86 0.90 0.86 0.84
Naïve Bayes 0.88 0.90 0.94 0.66 0.81
Combined 0.97 0.95 0.97 0.96 0.97

Table 5.5: AUC-values on the learning algorithms
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6 Conclusion

In this paper, we compared machine learning algorithms to the keyword-based algorithms that are currently used in
practice for the problem of recognizing missing spam mails. Our results show that the learning algorithms clearly
outperform the keyword-based approaches, both an approach with a static set of keywords as well as an approach
that automatically adapts its keywords to the user. The two standard learning algorithms, Naïve Bayes and Graham’s
algorithm seem to fit well to this problem, but exhibit very different characteristics. While Naïve Bayes has a higher
recall and a somewhat lower precision, Graham’s algorithm, originally proposed for spam filtering, focuses much more
on precision. A simple combination of the two outperformed all other algorithms. Given a randomly selected pair of
messages, one with attachment and one without, it will recognize the e-mail with attachment in more than 95% of the
cases.
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