Diplom-, Master-, Bachelor- oder Studienarbeiten

Im Fachgebiet Knowledge Engineering (Prof. J. Fürnkranz) werden zur Zeit folgende Themen für studentische Arbeiten angeboten. Die meisten Themen eignen sich sowohl für Master-, als auch für Studien- oder Bachelor-Arbeiten, wobei bei letzteren natürlich eine etwas weniger tiefe Behandlung des Themas erwartet wird.

Als Vorkenntnisse werden absolvierte Vorlesungen bzw. praktische Erfahrung in machinellem Lernen, Data Mining oder einem verwandten Gebiet erwartet.

Die Themen-Liste ist keineswegs vollständig und Sie sind auch herzlich eingeladen, selbst Themen vorzuschlagen. Am Fachgebiet findet auch regelmäßig ein Ober-Seminar statt, in dem laufende oder gerade fertig gestellte Arbeiten vorgestellt werden.

Antworten auf häufig gestellte Fragen zu Abschlußarbeiten finden Sie in unserer FAQ.

All theses can be written in English (in fact, this is strongly encouraged). English descriptions of individual topics are available upon request. Prior coursework or practical experience in machine learning, data mining or similar is expected.

 Regel-Lernen

Interpreting Deep Learning in NLP - Rule Extraction from Deep Neural Networks which use Embeddings

Ansprechpartner: ELM

Deep neural networks are black-boxes – they take some input and produce an output using mathematical functions which are not interpretable to humans. This poses a problem in many domains, including NLP, where users would benefit from explanations relating input and output in a human-understandable form. Rules of the form “if input-characteristic-x and input-characteristic-y then output-value” can provide an explanation. Recently, methods for extracting such rules from deep neural networks have been developed. How to apply these methods to natural language data, e.g. word embeddings, is an open problem.

Possible Tasks in this Master Thesis could be: Exploring rule extraction algorithms applicable to neural networks whose input are word embeddings, analyse the input-characteristics in extracted rules using linguistic methods to create a higher-level understanding, evaluating the interpretability of the final rules.

Data Mining

Competitions im Data Mining

Im Bereich des Data Mining gibt es eine Vielzahl an Wettbewerben, Competitions und Challenges. Ein jährlicher Wettbewerb, an dem die Knowledge Engineering Group regelmäßig teilnimmt, ist der  Data Mining Cup. Dabei werden besonders Vorhersageprobleme aus dem Feld der Recommender Systeme gestellt. Ein weiterer Wettbewerb, diesmal aus dem Bereich der Künstlichen Intelligenz, ist die Computer Poker Competition. Die Teilnahmen fanden jeweils im Rahmen eines Praktikums statt.

Wir möchten Studierenden die Möglichkeit geben, auch an weiteren interessanten Wettbewerben im Bereich des Data Mining und der Künstlichen Intelligenz teilnehmen zu können. Dies wird im Normalfall im Rahmen einer Studienarbeit stattfinden, aber je nach Aufwand und Vor- und Nacharbeit ist auch eine Bachelor- oder Masterarbeit oder ein Projektpraktikum denkbar.

Im Folgenden stellen wir eine kleine Liste laufender bzw. abgeschlossener (soweit aktualisiert) Wettbewerbe statt:

Weitere Möglichkeiten, um sich über aktuelle Wettbewerbe zu informieren, bieten:

Game Playing

Ansprechpartner: TJ

Unter General Video Game Playing versteht man das Spielen mehrerer unterschiedlicher Videospiele durch den gleichen Agenten. Anders als bei Schach, Go oder Poker kann hier nicht auf spielspezifisches Wissen zurückgegriffen werden, sondern muss ein möglichst allgemeiner Agent entwickelt werden, der in der Lage ist unterschiedlichste Spiele zu spielen.
Die General Video Game AI Competition (GVGAI) ist ein von Google Deepmind unterstützter internationaler Wettbewerb, in welchem Agenten auf unterschiedlichen Spielen, die sie vorher nicht kannten, gegeneinander antreten. Die Spiele sind in einem einheitlichen Framework, der Video Game Description Language (VGDL) implementiert.
 
Aktuell sind keine GVGAI-Arbeiten offen. Themenvorschläge aber möglich!
 

Deep Learning for Chess

Ansprechpartner: JF

The goal of this thesis is to test the potential of convolutional neural networks in the domain of chess. There are several tasks that need to be performed, such as the development of an auto-encoder that is able to compress and reconstruct chess position. A similar architecture that is trained to predict the board n moves in advance could, e.g., be used to make positional judgements. The main task is to find a suitable input representation (e.g. the raw board position, a bitmap board configuration consisting of 12 bit arrays, or other choices), a suitable deep network architecture, and the selection of suitable positions for training the network (a database with several million chess games is available). For this thesis you should have a good working knowledge of either chess playing or deep learning.

Classification of chess annotations

Ansprechpartner: JF

Chess games are often annotated by strong grandmasters. On the one and, they rely on a standardized symbol set for annotating whether a position is good or bad for the white or black player. On the other hand, however, they also often write plain text. The task of this thesis is to investigate to what extent such plain text annotations can be mapped to position evaluations. To do so, the first task is to extract texts with associated position evaluations from game databases. This dataset can the be used to evaluate standard sentiment classification techniques, or to train a tailor-made text classifier for this task.

Wissensgewinn aus Spiel-Datenbanken

Ansprechpartner: JF

Zu einer stetig wachsenden Anzahl von Spielen gibt es wertvolle Informationen in Datenbanken. Zum einen wurden viele Spiele bereits durch vollständige Enumeration gelöst, d.h. man weiss für jede mögliche Stellung (und damit auch für die Ausgangsstellung), ob die Stellung gewonnen oder verloren ist bzw. wie viele Züge man bis zum Gewinn benötigt. Zum anderen werden immer mehr Spiele zwischen menschlichen Gegnern aufgezeichnet und in Datenbanken gespeichert.

Derartige Datenbanken sind ein Parade-Beispiel für die Aufgabe von Data Mining: In den Daten steckt alle Information, die notwendig ist, um das Spiel perfekt (im Falle von vollständigen Datenbanken) oder sehr gut zu spielen (im Falle von Partiensammlungen von guten Spielern). Dennoch ist es angesichts der Fülle der Daten menschlichen Experten zumeist unmöglich, aus dieser Information explizites, formalisierbares Wissen zu gewinnen.

Eine Abschlussarbeit zu diesem Thema hätte die Aufgabe, aus einer relativ kleinen Datenbank (z.B. das König-Turm-König Endspiel im Schach) Wissen über das Spiel zu gewinnen, das in einer wohldefinierten Aufgabe zu einer Performanz-Steigerung führt. Solche Aufgaben können z.B. sein: einfache Konzepte zu lernen, mit deren Hilfe ein Programm seine Spielstärke verbessern kann, unter Verwendung häufig auftretender Muster eine bessere Komprimierung der Datenbank zu erreichen, etc. Das Hauptproblem, das dabei zu lösen sein wird, ist, geeignetes Hintergrundwissen zu definieren, mit deren Hilfe sinnvolle Konzepte repräsentiert werden können, sowie Data Mining Methoden so zu adaptieren, das sie dieses Wissen effizient nutzen können.

Künstliche Intelligenz in kommerziellen Computer-Spielen

Ansprechpartner: JF

Die kommerzielle Spiele-Industrie beginnt gerade Methoden der Künstlichen Intelligenz zu entdecken, um den Unterhaltungswert ihrer Spiele zu steigern. Die Expertise für die KI-Methoden ist bei uns vorhanden, die Expertise für die Spielanwendung müßten Sie mitbringen. Wenn Sie eine Idee für ein diesbezügliches Projekt haben, können wir gerne darüber sprechen, ob sich dieses für eine Master- oder Bachelor-Arbeit eignet.

Materialien:

 

    Kontakt
    small ke-icon

    Knowledge Engineering Group

    Fachbereich Informatik
    TU Darmstadt

    S2|02 D203
    Hochschulstrasse 10

    D-64289 Darmstadt

    Sekretariat:
    Telefon-Symbol +49 6151 16-21811
    Fax-Symbol +49 6151 16-21812
    E-Mail-Symbol info@ke.tu-darmstadt.de

     
    A A A | Drucken | Impressum | Sitemap | Suche | Mobile Version
    zum Seitenanfangzum Seitenanfang