Learning

- Learning agents
- Inductive learning
 - Different Learning Scenarios
 - Evaluation
- Neural Networks
 - Perceptrons
 - Multilayer Perceptrons
- Reinforcement Learning
 - Temporal Differences
 - Q-Learning
 - SARSA

Material from Russell & Norvig, chapters 18.1, 18.2, 20.5 and 21

Slides based on Slides by Russell/Norvig, Ronald Williams, and Torsten Reil
Learning

- Learning is essential for **unknown environments**, i.e., when designer lacks omniscience
- Learning is useful as a **system construction method**, i.e., expose the agent to reality rather than trying to write it down
- Learning modifies the agent's decision mechanisms to **improve performance**
Learning Agents

Performance standard

Critic

Sensors

feedback

Learning element

changes

knowledge

Problem generator

learning goals

experiments

Environment

Agent

Effectors
Learning Element

- Design of a learning element is affected by
 - Which components of the performance element are to be learned
 - What feedback is available to learn these components
 - What representation is used for the components

- Type of feedback:
 - Supervised learning:
 • correct answers for each example
 - Unsupervised learning:
 • correct answers not given
 - Reinforcement learning:
 • occasional rewards for good actions
Different Learning Scenarios

Supervised Learning
- A teacher provides the value for the target function for all training examples (labeled examples)
- concept learning, classification, regression

Reinforcement Learning
- The teacher only provides feedback but not example values

Unsupervised Learning
- There is no information except the training examples
- clustering, subgroup discovery, association rule discovery

Semi-supervised Learning
- Only a subset of the training examples are labeled
Inductive Learning

Simplest form: learn a function from examples

- f is the (unknown) target function
- An example is a pair $(x, f(x))$
- Problem: find a hypothesis h
 - given a training set of examples
 - such that $h \approx f$
 - on all examples
 - i.e. the hypothesis must generalize from the training examples
- This is a highly simplified model of real learning:
 - Ignores prior knowledge
 - Assumes examples are given
Inductive Learning Method

- Construct/adjust h to agree with f on training set
 - h is **consistent** if it agrees with f on all examples
- Example:
 - curve fitting
Inductive Learning Method

- Construct/adjust h to agree with f on training set
 - h is consistent if it agrees with f on all examples
- Example:
 - curve fitting

![Inductive Learning Diagram](image-url)
Inductive Learning Method

- Construct/adjust h to agree with f on training set
 - h is **consistent** if it agrees with f on all examples
- Example:
 - curve fitting
Inductive Learning Method

- Construct/adjust h to agree with f on training set
 - h is consistent if it agrees with f on all examples
- Example:
 - curve fitting

- Ockham's Razor
 - The best explanation is the simplest explanation that fits the data
- Overfitting Avoidance
 - maximize a combination of consistency and simplicity
Performance Measurement

- How do we know that $h \approx f$?
 - Use theorems of computational/statistical learning theory
 - Or try h on a new test set of examples where f is known (use same distribution over example space as training set)

Learning curve = % correct on test set over training set size
What are Neural Networks?

- Models of the brain and nervous system
- Highly parallel
 - Process information much more like the brain than a serial computer
- Learning

- Very simple principles
- Very complex behaviours

- Applications
 - As powerful problem solvers
 - As biological models
Pigeons as Art Experts

Famous experiment (Watanabe *et al.* 1995, 2001)

- Pigeon in Skinner box
- Present paintings of two different artists (e.g. Chagall / Van Gogh)
- Reward for pecking when presented a particular artist
Results

- Pigeons were able to discriminate between Van Gogh and Chagall with 95% accuracy
 - when presented with pictures they had been trained on

- Discrimination still 85% successful for previously unseen paintings of the artists

- Pigeons do not simply memorise the pictures
- They can extract and recognise patterns (the ‘style’)
- They generalise from the already seen to make predictions

- This is what neural networks (biological and artificial) are good at (unlike conventional computer)
A Biological Neuron

- Neurons are connected to each other via synapses
- If a neuron is activated, it spreads its activation to all connected neurons
An Artificial Neuron

(McCulloch-Pitts, 1943)

- Neurons correspond to nodes or **units**
- A **link** from unit j to unit i propagates activation a_j from j to i
- The **weight** $W_{j,i}$ of the link determines the strength and sign of the connection
- The total **input activation** is the sum of the input activations
- The **output activation** is determined by the activation function g

\[
a_i = g(in_i) = g\left(\sum_{j=0}^{n} W_{ji} \cdot a_j\right)
\]

Diagram:
- $a_0 = -1$
- Bias Weight $W_{0,i}$
- Input Links
- a_j
- $W_{j,i}$
- Input Function
- Activation Function g
- Output
- Output Links
Perceptron

- A single node
 - connecting \(n \) input signals \(a_j \) with one output signal \(a \)
 - typically signals are \(-1\) or \(+1\)

- Activation function
 - A simple threshold function:
 \[
 a = \begin{cases}
 -1 & \text{if } \sum_{j=0}^{n} W_j \cdot a_j \leq 0 \\
 1 & \text{if } \sum_{j=0}^{n} W_j \cdot a_j > 0
 \end{cases}
 \]

- Thus it implements a linear separator
 - i.e., a hyperplane that divides \(n \)-dimensional space into a region with output \(-1\) and a region with output \(1\)
Perceptrons and Boolean Functions

- A Perceptron can implement all elementary logical functions

 \[W_0 = 1.5 \]
 \[W_1 = 1 \]
 \[W_2 = 1 \]

- More complex functions like XOR cannot be modeled

\[W_0 = -0.5 \]
\[W_1 = 1 \]
\[W_2 = 1 \]

AND

\[W_0 = 0 \]
\[W_1 = -1 \]

OR

- Not

\[W_0 = 0 \]
\[W_1 = -1 \]

(McCulloch & Pitts, 1943)

(Minsky & Papert, 1969)

\[W_0 = -0.5 \]

(a) \(I_1 \text{ and } I_2 \)

(b) \(I_1 \text{ or } I_2 \)

(c) \(I_1 \text{ xor } I_2 \)

No linear separation possible.
Perceptron Learning

- **Perceptron Learning Rule for Supervised Learning**

\[
W_j \leftarrow W_j + \alpha \cdot (f(x) - h(x)) \cdot x_j
\]

- **Example:**

Computation of output signal \(h(x) \)

\[
in(x) = -1 \cdot 0.2 + 1 \cdot 0.5 + 1 \cdot 0.8 = 1.1
\]

\(h(x) = 1 \) because \(in(x) > 0 \) (activation function)

Assume target value \(f(x) = -1 \) (and \(\alpha = 0.5 \))

\[
W_0 \leftarrow 0.2 + 0.5 \cdot (-1 - 1) \cdot 1 = 0.2 + 1 = 1.2
\]

\[
W_1 \leftarrow 0.5 + 0.5 \cdot (-1 - 1) \cdot 1 = 0.5 - 1 = -0.5
\]

\[
W_2 \leftarrow 0.8 + 0.5 \cdot (-1 - 1) \cdot 1 = 0.8 - 1 = -0.2
\]
Measuring the Error of a Network

- The error for one training example \(x \) can be measured by the squared error
 - the squared difference of the output value \(h(x) \) and the desired target value \(f(x) \)

\[
E(x) = \frac{1}{2} \text{Err}^2 = \frac{1}{2} (f(x) - h(x))^2 = \frac{1}{2} \left(f(x) - g(\sum_{j=0}^{n} W_j \cdot x_j) \right)^2
\]

- For evaluating the performance of a network, we can try the network on a set of datapoints and average the value
 (= sum of squared errors)

\[
E(\text{Network}) = \sum_{i=1}^{N} E(x_i)
\]
Error Landscape

- The error function for one training example may be considered as a function in a multi-dimensional weight space.

\[E(W) = \frac{1}{2} \left(f(x) - g \left(\sum_{j=0}^{n} W_j \cdot x_j \right) \right)^2 \]

Weight space is N-dimensional, where N is the total number of weights in the network.

- The best weight setting for one example is where the error measure for this example is minimal.
Error Minimization via Gradient Descent

- In order to find the point with the minimal error:
 - go downhill in the direction where it is steepest

\[E(W) = \frac{1}{2} \left(f(x) - g\left(\sum_{j=0}^{n} W_j x_j \right) \right)^2 \]

- ... but make small steps, or you might shoot over the target

Weight space is \(N \)-dimensional, where \(N \) is the total number of weights in the network.
Error Minimization

- It is easy to derive a perceptron training algorithm that minimizes the squared error

\[E = \frac{1}{2} \text{Err}^2 = \frac{1}{2} (f(x) - h(x))^2 = \frac{1}{2} \left(f(x) - g\left(\sum_{j=0}^{n} W_j \cdot x_j \right) \right)^2 \]

- Change weights into the direction of the steepest descent of the error function

\[\frac{\partial E}{\partial W_j} = \text{Err} \cdot \frac{\partial \text{Err}}{\partial W_j} = \text{Err} \cdot \frac{\partial}{\partial W_j} \left(f(x) - g\left(\sum_{k=0}^{n} W_k \cdot x_k \right) \right) = -\text{Err} \cdot g'(\text{in}) \cdot x_j \]

- To compute this, we need a continuous and differentiable activation function \(g \)!

- Weight update with learning rate \(\alpha \):

\[W_j \leftarrow W_j + \alpha \cdot \text{Err} \cdot g'(\text{in}) \cdot x_j \]

- positive error → increase network output
 - increase weights of nodes with positive input
 - decrease weights of nodes with negative input
Threshold Activation Function

- The regular threshold activation function is problematic
 - \(g'(x) = 0 \), therefore \(\frac{\partial E}{\partial W_{j,i}} = -Err \cdot g'(in_i) \cdot x_j = 0 \)
 - \(g'(x) = 0 \), therefore no weight changes!

\[
g(x) = \begin{cases}
0 & \text{if } x \leq 0 \\
1 & \text{if } x > 0
\end{cases}
\]

\[
g'(x) = 0
\]
A commonly used activation function is the sigmoid function

- similar to the threshold function
- easy to differentiate
- non-linear

\[g(x) = \begin{cases} 0 & \text{if } x \leq 0 \\ 1 & \text{if } x > 0 \end{cases} \]

\[g'(x) = 0 \]

\[g(x) = \frac{1}{1 + e^{-x}} \]

\[g'(x) = g(x)(1 - g(x)) \]
Multilayer Perceptrons

- Perceptrons may have multiple output nodes
 - may be viewed as multiple parallel perceptrons
- The output nodes may be combined with another perceptron
 - which may also have multiple output nodes
- The size of this hidden layer is determined manually
Multilayer Perceptrons

- Information flow is unidirectional
 - Data is presented to *Input layer*
 - Passed on to *Hidden Layer*
 - Passed on to *Output layer*

- Information is distributed

- Information processing is parallel

Expressiveness of MLPs

- Every continuous function can be modeled with three layers
 - i.e., with one hidden layer
- Every function can be modeled with four layers
 - i.e., with two hidden layers
Backpropagation Learning

- The **output nodes** are trained like a normal perceptron

\[W_{ji} \leftarrow W_{ji} + \alpha \cdot Err_i \cdot g'(in_i) \cdot x_j = W_{ji} + \alpha \cdot \Delta_i \cdot x_j \]

- \(\Delta_i \) is the error term of output node \(i \) times the derivation of its inputs

- the error term \(\Delta_i \) of the output layers is propagated back to the **hidden layer**

\[\Delta_j = \sum_i W_{ji} \cdot \Delta_i \cdot g'(in_j) \]

\[W_{kj} \leftarrow W_{kj} + \alpha \cdot \Delta_j \cdot x_k \]

- the training signal of hidden layer node \(j \) is the weighted sum of the errors of the output nodes
Minimizing the Network Error

- The error landscape for the entire network may be thought of as the sum of the error functions of all examples
 - will yield many local minima → hard to find global minimum
- Minimizing the error for one training example may destroy what has been learned for other examples
 - a good location in weight space for one example may be a bad location for another examples
- **Training procedure:**
 - try all examples in turn
 - make small adjustments for each example
 - repeat until convergence
- One Epoch = One iteration through all examples
Overfitting

- **Training Set Error** continues to decrease with increasing number of training examples / number of epochs
 - an epoch is a complete pass through all training examples
- **Test Set Error** will start to increase because of overfitting

- Simple training protocol:
 - keep a separate *validation set* to watch the performance
 - validation set is different from training and test sets!
 - stop training if error on validation set gets down
Deep Learning

- In the last years, great success has been observed with training „deep“ neural networks
 - Deep networks are networks with multiple layers
- Successes in particular in image classification
 - Idea is that layers sequentially extract information from image
 - 1st layer → edges,
 - 2nd layer → corners, etc…
- Key ingredients:
 - A lot of training data are needed and available (big data)
 - Fast processing and a few new tricks made fast training for big data possible
 - Unsupervised pre-training of layers
 - Autoencoder use the previous layer as input and output for the next layer
Wide Variety of Applications

- Speech Recognition
- Autonomous Driving
- Handwritten Digit Recognition
- Credit Approval
- Backgammon
- etc.

- **Good** for problems where the final output depends on combinations of many input features
 - rule learning is better when only a few features are relevant
- **Bad** if explicit representations of the learned concept are needed
 - takes some effort to interpret the concepts that form in the hidden layers