Planning

- Introduction
 - Planning vs. Problem-Solving
 - Representation in Planning Systems
- Situation Calculus
 - The Frame Problem
- STRIPS representation language
 - Blocks World
- Planning with State-Space Search
 - Progression Algorithms
 - Regression Algorithms
- Planning with Plan-Space Search
 - Partial-Order Planning
 - The Plan Graph and GraphPlan
 - SatPlan

Material from Russell & Norvig, chapters 10.3. and 11

Slides based on Slides by Russell/Norvig, Lise Getoor and Tom Lenaerts
Sussman Anomaly

- Famous example that shows that subgoals are not independent
- **goal:** on(A, B), on(B, C)

- **achieve on(B, C) first:**
 - shortest solution will just put B on top of C → subgoal has to be undone in order to complete the goal

- **achieve on(A, B) first:**
 - shortest solution will not put B on C → subgoal has do be undone later in order to complete the goal
Partial-Order Planning (POP)

- Progression and regression planning are totally ordered plan search forms
 - this means that in all searched plans the sequence of actions is completely ordered
 - Decisions must be made on how to sequence actions in all the subproblems
 → They cannot take advantage of problem decomposition
- If actions do not interfere with each other, they could be made in any order (or in parallel) → partially ordered plan
 - if a plan for each subgoal only makes minimal commitments to orders
 - only orders those actions that must be ordered for a successful completion of the plan
 - it can re-order steps later on (when subplans are combined)
- Least commitment strategy:
 - Delay choice during search
Shoe Example

Initial State: nil
Goal State: RightShoeOn & LeftShoeOn

Action(LeftSock,
 PRECOND: -
 ADD: LeftSockOn
 DELETE: -
)

Action(RightSock,
 PRECOND: -
 ADD: RightSockOn
 DELETE: -
)

Action(LeftShoe,
 PRECOND: LeftSockOn
 ADD: LeftShoeOn
 DELETE: -
)

Action(RightShoe,
 PRECOND: RightSockOn
 ADD: RightShoeOn
 DELETE: -
)
Shoe Example

- **Total-Order Planner**
 - all actions are completely ordered

- **Partial-Order Planner**
 - may leave the order of some actions undetermined
 - any order is valid
State-Space vs. Plan-Space Search

State-Space Planning
- Search goes through possible states

Plan-Space Planning
- Search goes through possible plans

- Set of formulas
- STRIPS operator
- Plan component
- Plan-space search:
 - Plan transformation operators
 - Incomplete plan

- S0
- S1
- S2
POP as a Search Problem

- A solution can be found by a search through Plan-Space:
 - States are (mostly unfinished) plans

Each plan has 4 components:
- A set of actions (steps of the plan)
- A set of ordering constraints: \(A < B \) (\(A \) before \(B \))
 - Cycles represent contradictions.
- A set of causal links \(A \rightarrow p \rightarrow B \) (\(A \) adds \(p \) for \(B \))
 - The plan may not be extended by adding a new action \(C \) that conflicts with the causal link.
 - An action \(C \) conflicts with causal link \(A \rightarrow p \rightarrow B \)
 - if the effect of \(C \) is \(\neg p \) and if \(C \) could come after \(A \) and before \(B \)
- A set of open preconditions
 - Preconditions that are not achieved by action in the plan
Example of Final Plan

- **Actions** = `{RightSock, RightShoe, LeftSock, LeftShoe, Start, Finish}

- **Orderings** =
 - `{RightSock < RightShoe; LeftSock < LeftShoe}

- **Causal Links** =
 - `{RightSock → RightSockOn → RightShoe, LeftSock → LeftSockOn → LeftShoe, RightShoe → RightShoeOn → Finish, LeftShoe → LeftShoeOn → Finish}

- **Open preconditions** = `{}`
Search through Plan-Space

- **Initial State** (empty plan):
 - contains only virtual **Start** and **Finish** actions
 - ordering constraint **Start** < **Finish**
 - no causal links
 - all preconditions in **Finish** are open
 - these are the original goal

- **Successor Function** (refining the plan):
 generates all consistent successor states
 - picks one open precondition p on an action B
 - generates one successor plan for every possible *consistent* way of choosing action that achieves p
 - a plan is *consistent* iff
 - there are *no cycles* in the ordering constraints
 - *no conflicts* with the causal links

- **Goal test** (final plan):
 - A consistent plan with no open preconditions is a solution.
Subroutines

- **Refining a plan** with action A, which achieves p for B:
 - add causal link $A \rightarrow p \rightarrow B$
 - add the ordering constraint $A < B$
 - add **Start** $< A$ and $A < **Finish** to the plan (only if A is new)
 - resolve conflicts between
 - new causal link $A \rightarrow p \rightarrow B$ and all existing actions
 - new action A and all existing causal links (only if A is new)

- **Resolving a conflict** between a causal link $A \rightarrow p \rightarrow B$ and an action C
 - we have a conflict if the effect of C is $\neg p$ and C could come after A and before B
 - resolved by adding the ordering constraints $C < A$ or $B < C$
 - both refinements are added (two successor plans) if both are consistent
Search through Plan-Space

- **Operators** on partial plans
 - Add an action to fulfill an open condition
 - Add a causal link
 - Order one step w.r.t another to remove possible conflicts

- **Search** gradually moves from incomplete/vague plans to complete/correct plans

- **Backtrack** if an open condition is unachievable or if a conflict is irresolvable
 - pick the next condition to achieve at one of the previous choice points
 - ordering of the conditions is irrelevant for completeness (the same plans will be found), but may be relevant for consistency
Executing Partially Ordered Plans

- Any particular order that is consistent with the ordering constraints is possible
 - A partial order plan is executed by repeatedly choosing any of the possible next actions.
- This flexibility is a benefit in non-cooperative environments.
Example: Spare Tire Problem

Initial State: \(\text{at(flat,axle), at(spare,trunk)} \)

Goal State: \(\text{at(spare,axle)} \)

Action(remove(spare,trunk),
 PRECOND: \(\text{at(spare,trunk)} \)
 ADD: \(\text{at(spare,ground)} \)
 DELETE: \(\text{at(spare,trunk)} \)
)

Action(remove(flat,axle),
 PRECOND: \(\text{at(flat,axle)} \)
 ADD: \(\text{at(flat,ground)} \)
 DELETE: \(\text{at(flat,axle)} \)
)

Action(putOn(spare,axle),
 PRECOND: \(\text{at(spare,ground), not(at(flat,axle))} \)
 ADD: \(\text{at(spare,axle)} \)
 DELETE: \(\text{at(spare,ground)} \)
)

Here we need a not, which is not part of the original STRIPS language!
Example: Spare Tire Problem

- Initial plan:
 - Action `start` has the current state as effects
 - Action `finish` has the goal as preconditions

```
Start
At(Spare, Trunk)
At(Flat, Axle)

At(Spare, Axle)
Finish
```
Example: Spare Tire Problem

- Action \texttt{putOn(spare,axle)} is the only action that achieves the goal \texttt{at(spare,axle)}
- the current plan is refined to one new plan:
 - \texttt{putOn(spare,axle)} is added to the list of actions
 - add constraints \texttt{putOn(spare,axle) < finish} and \texttt{> start}
 - add causal link \texttt{putOn(spare,axle) \rightarrow at(spare,axle) \rightarrow finish}
 - the preconditions of \texttt{putOn(spare,axle)} are now open
Example: Spare Tire Problem

- we select the next open precondition \(\text{at(spare,ground)} \) as a goal
- only \(\text{remove(spare,trunk)} \) can achieve this goal
- the current plan is refined to a new one as before, causal links are added
Example: Spare Tire Problem

- we select the next open precondition \(\text{not(at(flat,axle))} \) as a goal
- could be achieved with two actions
 - leave-overnight
 - remove(flat,axle)
- \(\rightarrow \) we have two successor plans
Example: Spare Tire Problem

Plan 1: leaf-overnight
- is in conflict with the constraint
 \[\text{remove(spare, trunk)} \rightarrow \text{at(spare, ground)} \rightarrow \text{putOn(spare, axle)} \]
 \[\rightarrow \text{has to be ordered before remove(spare, trunk)} \]
 - cannot be ordered after putOn(spare, axle) because it achieves its precondition
 - constraint \text{leave-overnight} < \text{remove(spare, trunk)} \text{ is added}
Example: Spare Tire Problem

Plan 1: leave-overnight
- the condition $at(spare, trunk)$ has to be achieved next
 - $start$ is the only action that can achieve this
 - however, $start \rightarrow at(spare, trunk) \rightarrow remove(spare, trunk)$
 is in conflict with leave-overnight
 - this conflict cannot be resolved \rightarrow backtracking

leave-overnight cannot be ordered before $start$, and is already ordered before $remove(spare, trunk)$
\rightarrow irresolvable conflict
Example: Spare Tire Problem

Plan 2: `remove(\text{flat,axle})`

- achieves goal `\text{not(at(flat,axle))}`
- corresponding causal link and order relation are added
- `at(\text{flat,axle})` becomes open precondition
Example: Spare Tire Problem

- open precondition $at(\text{spare, trunk})$ is selected as goal
 - action start is added
 - corresponding causal link and order relation are added
Example: Spare Tire Problem

- open precondition $\text{at}(\text{spare}, \text{trunk})$ is selected as goal
 - action start is added
 - corresponding causal link and order relation are added
- open precondition $\text{at}(\text{flat}, \text{axle})$ is selected as goal
 - action start can achieve this and is already part of the plan
 - corresponding causal link and order relation are added
- no more open preconditions remain
 → plan is completed
POP in First-Order Logic

- Operators may leave some variables unbound

Example
- Achieve goal \(\text{on}(a,b)\) with action \(\text{move}(a,\text{From},b)\)
- It remains unspecified from where block \(a\) should be moved (\(\text{PRECOND}: \text{on}(a,\text{From})\))

Two approaches
- Decide for one binding and backtrack later on (if necessary)
- Defer the choice for later (least commitment)

Problems with least commitment:
- e.g., an action that has \(\text{on}(a,\text{From})\) on its delete-list will only conflict with above if both are bound to the same variable
- can be resolved by introducing inequality constraint.
Heuristics for Plan-Space Planning

- Not as well understood as heuristics for state-space planning
- General heuristic: number of distinct open preconditions
 - maybe minus those that match the initial state
 - underestimates costs when several actions are needed to achieve a condition
 - overestimates costs when multiple goals may be achieved with a single action
- Choosing a good precondition to refine has also a strong impact
 - select open condition that can be satisfied in the fewest number of ways
 - analogous to most-constrained variable heuristic from CSP
 - Two important special cases:
 - select a condition that cannot be achieved at all (early failure!)
 - select deterministic conditions that can only be achieved in one way
Planning Graph

- A planning graph is a special structure used to
 - achieve better heuristic estimates.
 - directly extract a solution using GRAPHPLAN algorithm
- Consists of a sequence of levels (time steps in the plan)
 - Level 0 is the initial state.
- Each level consists of a set of literals and a set of actions.
 - Literals = all those that could be true at that time step
 - depending on the actions executed at the preceding time step
 - Actions = all those actions that could have their preconditions satisfied at that time step
 - depending on which of the literals actually hold.
 - Only a restricted subset of possible negative interactions among actions is recorded
- Planning graphs work only for propositional problems
 - STRIPS and ADL can be propositionalized
Cake Example

- Initial state: \texttt{have(cake)}
- Goal state: \texttt{have(cake), eaten(cake)}

Action(\texttt{eat(cake)},
PRECOND: \texttt{have(cake)}
ADD: \texttt{eaten(cake)}
DELETE: \texttt{have(cake)})

Action(\texttt{bake(cake)},
PRECOND: \texttt{not(have(cake))}
ADD: \texttt{have(cake)}
DELETE: \texttt{-})

Persistence Actions
- pseudo-actions for which the effect equals the precondition
- analogous to frame axioms
- are automatically added by the planner

Mutual exclusions
- link actions or preconditions that are mutually exclusive (\texttt{mutex})
Cake Example

Persistence Actions (□)
- pseudo-actions for which the effect equals the precondition
- analogous to frame axioms
- are automatically added by the planner

Mutual exclusions (mutex)
- link actions or preconditions that are mutually exclusive (mutex)
Cake Example

- Start at level S_0, determine action level A_0 and next level S_1
 - A_0 contains all actions whose preconditions are satisfied in the previous level S_0
 - Connect preconditions and effects of these actions
 - Inaction is represented by persistence actions
- Level A_0 contains the actions that could occur
 - Conflicts between actions are represented by mutex links
Cake Example

- Per construction, Level S_1 contains all literals that could result from picking any subset of actions in A_0
 - Conflicts between literals that can not occur together are represented by mutex links.
 - S_1 defines multiple possible states and the mutex links are the constraints that hold in this set of states
- Continue until two consecutive levels are identical
 - Or contain the same amount of literals (explanation later)
Mutex Relations

- A mutex relation holds between **two actions** when:
 - **Inconsistent effects:**
 - one action negates the effect of another.
 - **Interference:**
 - one of the effects of one action is the negation of a precondition of the other.
 - **Competing needs:**
 - one of the preconditions of one action is mutually exclusive with the precondition of the other.

- A mutex relation holds between **two literals** when:
 - **Inconsistent support:**
 - If one is the negation of the other OR
 - if each possible action pair that could achieve the literals is mutex
Example: Spare Tire Problem

Initial State: at(flat,axle),
at(spare,trunk)
Goal State: at(spare,axle)

Action(remove(spare,trunk),
 PRECOND: at(spare,trunk)
 ADD: at(spare,ground)
 DELETE: at(spare,trunk)
)

Action(remove(flat,axle),
 PRECOND: at(flat,axle)
 ADD: at(flat,ground)
 DELETE: at(flat,axle)
)

Action(putOn(spare,axle),
 PRECOND: at(spare,ground),
 not(at(flat,axle)),
 ADD: at(spare,axle)
 DELETE: at(spare,ground)
)

Here we need a not, which is not part of the original STRIPS language!
GRAPHPLAN Example

- S_0 consist of 5 literals (initial state and the CWA literals)

$$S_0$$

$\text{At}(\text{Spare}, \text{Trunk})$

$\text{At}(\text{Flat}, \text{Axle})$

$\neg \text{At}(\text{Spare}, \text{Axle})$

$\neg \text{At}(\text{Flat}, \text{Ground})$

$\neg \text{At}(\text{Spare}, \text{Ground})$
GRAPHPLAN Example

- S_0 consist of 5 literals (initial state and the CWA literals)
- EXPAND-GRAPH adds actions with satisfied preconditions
 - add the effects at level S_1
 - also add persistence actions and mutex relations
GRAPHPLAN Example

- Repeat

Note: Not all mutex links are shown!

Inconsistent Effects

Interference

Competing Needs

Inconsistent Support
GRAPHPLAN Example

- Repeat until all goal literals are pairwise non-mutex in S_i
 - If all goal literals are pairwise non-mutex, this means that a solution might exist
 - not guaranteed because only pairwise conflicts are checked
 → we need to search whether there is a solution
Deriving Heuristics from the PG

- Planning Graphs provide information about the problem
 - Example:
 - A literal that does not appear in the final level of the graph cannot be achieved by any plan
- Extraction of a **serial plan**
 - PG allows several actions to occur simultaneously at a level
 - can be serialized by restricting PG to one action per level
 - add mutex links between every pair of actions
 - provides a **good heuristic** for serial plans
- Useful for backward search
 - Any state with an unachievable precondition has cost $= +\infty$
 - Any plan that contains an unachievable precond has cost $= +\infty$
 - In general: **level cost** $= \text{level of first appearance of a literal}$
 - clearly, level cost are an admissible search heuristic
- PG may be viewed as a **relaxed problem**
 - checking only for consistency between pairs of actions/literals
Costs for Conjunctions of Literals

- **Max-level**: maximum level cost of all literals in the goal
 - admissible but not accurate
- **Sum-level**: sum of the level costs
 - makes the subgoal independence assumption
 - inadmissible, but works well in practice
- **Cake Example**:
 - estimated costs for `have(cake) ∧ eaten(cake)` is 0+1=1
 - true costs are 2
- **Cake Example without action `bake(cake)`**
 - estimated costs are the same
 - true costs are $+\infty$
- **Set-level**: find the level at which all literals appear and no pair has a mutex link
 - gives the correct estimate in both examples above
 - dominates max-level heuristic, works well with interactions
The \texttt{GRAPHPLAN} Algorithm

- Algorithm for extracting a solution directly from the PG
 - alternates solution extraction and graph expansion steps

```
function GRAPPLAN(problem) returns solution or failure
    graph ← INITIAL-PLANNING-GRAPH(problem)
    goals ← GOALS[problem]
    loop do
        if goals all non-mutex in last level of graph then do
            solution ← EXTRACT-SOLUTION(graph, goals, LENGTH(graph))
            if solution ≠ failure then return solution
        else if NO-SOLUTION-POSSIBLE(graph) then return failure
        graph ← EXPAND-GRAPH(graph, problem)
```

- \texttt{EXTRACT-SOLUTION}:
 - checks whether a plan can be found searching backwards
- \texttt{EXPAND-GRAPH}:
 - adds actions for the current and state literals for the next level
A state consists of
- a pointer to a level in the planning graph
- a set of unsatisfied goals

- Initial state
 - last level of PG
 - set of goals from the planning problem

- Actions
 - select any non-conflicting subset of the actions of A_{i-1} that cover the goals in the state

- Goal
 - success if level S_0 is reached with such with all goals satisfied

- Cost
 - 1 for each action

Could also be formulated as a Boolean CSP
GRAPHPLAN Example

- Start with goal state \(at(\text{spare,axle}) \) in \(S_2 \)
 - only action choice is \(\text{puton}(\text{spare,axle}) \) with preconditions
 \(\neg \text{at}(\text{spare,axle}) \) and \(\text{at}(\text{spare,ground}) \) in \(S_1 \)
 - two new goals in level 1
GRAPHPLAN Example

- \(\text{remove}(\text{spare, trunk}) \) is the only action to achieve \(\text{at}(\text{spare, ground}) \)
- \(\neg \text{at}(\text{flat, axle}) \) can be achieved with \(\text{leave-overnight} \) and \(\text{remove}(\text{flat, axle}) \)
- \(\text{leave-overnight} \) is mutex with \(\text{remove}(\text{spare, trunk}) \) → \(\text{remove}(\text{spare, trunk}) \) and \(\text{remove}(\text{flat, axle}) \)
- preconditions are satisfied in \(S_0 \) → we're done

\[
\begin{align*}
S_0: & \quad \text{At}(\text{spare, trunk}) \\
A_0: & \quad \text{remove}(\text{spare, trunk}) \\
S_1: & \quad \text{At}(\text{spare, trunk}) \\
A_1: & \quad \text{remove}(\text{spare, trunk}) \\
S_2: & \quad \text{At}(\text{spare, trunk})
\end{align*}
\]

\[
\begin{align*}
A_0: & \quad \text{At}(\text{flat, axle}) \\
A_0: & \quad \neg \text{At}(\text{spare, axle}) \\
A_0: & \quad \neg \text{At}(\text{flat, ground}) \\
A_0: & \quad \neg \text{At}(\text{spare, ground}) \\
A_1: & \quad \neg \text{At}(\text{flat, axle}) \\
A_1: & \quad \neg \text{At}(\text{spare, axle}) \\
A_1: & \quad \neg \text{At}(\text{flat, ground}) \\
A_1: & \quad \neg \text{At}(\text{spare, ground}) \\
S_2: & \quad \text{At}(\text{spare, ground})
\end{align*}
\]
Termination of GraphPlan

1. The planning graph converges because everything is finite
 - number of literals is monotonically increasing
 - a literal can never disappear because of the persistence actions
 - number of actions is monotonically increasing
 - once an action is applicable it will always be applicable
 (because its preconditions will always be there)
 - number of mutexes is monotonically decreasing
 - If two actions are mutex at one level, they are also mutex in all
 previous levels in which they appear together
 - inconsistent effects and interferences are properties of actions
 → if they hold once, they will always hold
 - competing needs are properties of mutexes
 → if the number of actions goes up, chances increase that there is
 a pair of non-mutex actions that achieve the preconditions

2. After convergence, EXTRACT-SOLUTION will find an existing
 solution right away or in subsequent expansions of the PG
 - more complex proof (not covered here)
SatPlan

- **Key idea:**
 - translate the planning problem into *propositional logic*
 - similar to situation calculus, but all facts and rules are ground
 - the same literal in different situations is represented with two different propositions (we call them propositions at a depth \(i\))
 - actions are also represented as propositions
 - rules are used to derive propositions of depth \(i+1\) from actions and propositions of depth \(i\)

- **Goal:**
 - find a true formula consisting of propositions of the *initial state*, propositions of the *goal state*, and some action propositions

- **Method:**
 - use a satisfiability solver with iterative deepening on the depth
 - first try to prove the goal in depth 0 (initial state)
 - then try to prove the goal in depth 1
 - until a solution is found in depth \(n\)
Key Problem

- Complexity
 - In the worst case, a proposition has to be generated
 - for each of a actions with
 - each of o possible objects in the n arguments
 - for a solution depth d

 \rightarrow maximum number of propositions is $d \cdot a \cdot o^n$

- the number of rules is even larger

Solution Attempt: Symbol Splitting

- a possible solution is to convert each n-ary relation into n binary relations
 - “the i-th argument of relation r is y”

 - this will also reduce the size of the knowledge base because arguments that are not used can be omitted from the rules

 - Drawback: multiple instances of the same rule get mixed up
 \rightarrow no two actions of same type at the same time step

- Nevertheless, SATPLAN is very competitive