Planning

- Introduction
 - Planning vs. Problem-Solving
 - Representation in Planning Systems
- Situation Calculus
 - The Frame Problem
- STRIPS representation language
 - Blocks World
- Planning with State-Space Search
 - Progression Algorithms
 - Regression Algorithms
- Planning with Plan-Space Search
 - Partial-Order Planning
 - The Plan Graph and GraphPlan
 - SatPlan

Material from
Russell & Norvig, chapters 7.7. and 10

Many slides based on
Russell & Norvig's slides
Artificial Intelligence:
A Modern Approach

Some based on Slides by
Lise Getoor and Tom Lenaerts
Planning problem

- Planning is the task of coming up with a sequence of actions that will achieve a goal starting from an initial state.
 - many search-based problem-solving agents are special cases
- Given:
 - a set of action descriptions (defining the possible primitive actions by the agent),
 - an initial state description, and
 - a goal state description or predicate,
- Find a plan, which is
 - a sequence of action instances, such that executing them in the initial state will change the world to a state satisfying the goal-state description.
- Goals are usually specified as a conjunction of subgoals to be achieved.
Application Scenario

- Classical planning environment
 - fully observable, deterministic, finite, static, discrete
- Practical Applications
 - design and manufacturing
 - military operations
 - games
 - space exploration
Planning vs. Problem Solving

- Planning and problem solving methods can often solve the same sorts of problems.
- Planning is more powerful because of the representations and methods used:
 - States, goals, and actions are decomposed into sets of sentences (usually in first-order logic).
- Planning can analyze the effects of actions:
 - The successor function is a black box: it must be “applied” to a state to know which actions are possible in that state and what are the effects of each one.
 - An explicit representation of the possible actions and their effects would help the problem solver.
- Subgoals can often be planned independently, reducing the complexity of the planning problem.
- Search may be through plan space rather than state space.
Representation in Planning

- **In Problem Solving**, actions, states, and goals are **black boxes**
 - each problem has its own representation
 - agent does not understand the representations of actions, states, and goals
 → cannot exploit relations between them

- **Planning works with explicit representations** of actions, states, and goals
 - typically in some form of logical calculus
Key Problems

- Which actions are relevant?
 - Example: Goal is have(milk)
 - the agent may have billions of possible actions
 - e.g., one buy-action for each possible product in a store
 - an intelligent planner will know that buy(X) will cause have(X), and only consider the action buy(milk)

- What is a good heuristic function?
 - Problem:
 - states are domain-specific data structures, and new heuristics must be supplied for each new problem
 - Example: Goal is buying n different items
 - Number of plans grows exponentially with n
 - Problem-independent heuristics are needed
 - e.g., number of subgoals that have already been reached
 - How to decompose a problem?
Decomposable Problems

- Goals are often given as a conjunction of subgoals
 - e.g., \texttt{have(milk)} \& \texttt{have(bread)}
 - each subgoal can be solved independently

Other problems can be decomposed into subproblems:
- Example: overnight delivery of a set of packages
 - Planning a complete route for all packages at once is very expensive ($O(n!)$ different routes)
 - \textcolor{red}{\text{→ Better decompose the problem:}}
 - First distribute the packages to the airports nearest to the respective destinations
 - Then plan separate routes from each airport to the final destinations
 - \textcolor{red}{\text{→ $O(k \cdot (n/k)!)$ different routes if we have k airports}}
 - \textcolor{red}{\text{much less than $O(n!)$}}
Nearly Decomposable Problems

- Completely decomposable problems are rare
 - typically there are interactions between subgoals

→ Nearly decomposable problems
 - planning for subgoals is possible
 - but additional work may be required to bring the partial results together

- Example:
 - Independent plans for \texttt{have(milk)} and \texttt{have(bread)} may have the result that two different super-markets are visited
Major Approaches to Planning

- Situation calculus
- State space planning
- Partial order planning
- Planning graphs
- Planning with Propositional Logic
- Hierarchical decomposition (HTN planning)
- Reactive planning
Planning in First-Order Logic

Principal Idea:
- Formulate planning problem in First-Order Logic (FOL)
 - states (and goals) are conjunctions of literals
 - actions are logical rules
- Use theorem prover to find a proof for the goal
 - the actions used in this proof are the plan
 - e.g., use PROLOG

Key Problem:
- How to represent change?
 a) add and delete sentences from the Knowledge Base (KB) to reflect changes
 b) all facts are indexed by a situation variable → situation calculus
PROLOG-like Logical Notation

- **Constant:** represents some objects
 - starts with a number or a lower-case letter
 - e.g., etc.
 - functions are like constants, but complex expressions
- **Variable:** denotes some unknown object/constant
 - starts with an upper-case letter or an underscore
 - e.g. etc.
 - within a conjunction of literals, same variables refer to same objects
 - but may be different objects in different conjunctions / rules
- **Predicate:** denotes a relation between two objects
 - starts with a lower-case letter
 - e.g.,
- **Literal:** a predicate symbol with some arguments
 - e.g., parent(pam, bob), at(pam, X), airport(X)
- **Rule:** an implication, typically written Head :- Cond1, Cond2,
 - e.g., grandparent(X, Y) :- parent(X, Z), parent(Z, Y).
Situation Calculus

- A **situation** is a snapshot of the world at some instant in time.
- Every true or false statement is made with respect to a particular situation.
 - Add situation variables to every predicate.
 - $\text{at}(\text{agent}, 1, 1)$ becomes $\text{at}(\text{agent}, 1, 1, s0)$: $\text{at}(\text{agent}, 1, 1)$ is true in situation (i.e., state) $s0$.

- Add a new function, $\text{result}(a, s)$, that maps a situation s into a new situation as a result of performing action a.
 - For example, $\text{result}(\text{forward}, s)$ is a function that returns the successor state (situation) to s after performing action forward.
 - Note that this is just notation!
 - Logical functions are not implemented or evaluated!
 - They are used in pattern matching.
Situation Calculus

- **Actions** can be represented as logical rules that describe which states can be valid

- **Example:**
 - The action *agent-walks-to-location-y* could be represented by the PROLOG rule

 \[
 \text{at}(A,Y,\text{result(walk}(Y),S)) \leftarrow \text{at}(A,X,S).
 \]

 `agent A is now at location Y in state result(walk(Y),S)`

 `if it was at location X in state S and performed action walk(Y)`

- **Action sequences** result in nested function expressions

 - \[
 \text{at(home, result(go(home),}
 \text{result(go(grocery),}
 \text{result(go(hardwarestore),s0))))}
 \]

 - In the state that results from the application of `go(home)` to the state that results from the application of `go(grocery)` to the state that results from the application of `go(hardwarestore)` to the state `s0` the proposition `at(home)` holds.
Situation Calculus Planning

- **Initial state**
 - a logical sentence that describes current situation S_0

 \[\text{at(home, s0)}, \text{not(have(milk, s0))}, \text{not(have(bread, s0))}, \text{not(have(drill, s0))} \]

- **Goal state**
 - a logical sentence that describes the goal state

 \[\text{at(home, G)}, \text{have(milk, G)}, \text{have(bread, G)}, \text{have(drill, G)} \]

- **Actions (Operators)**
 - logical rules that describe the effects of actions

 \[
 \begin{align*}
 \text{have(milk, result(A, S))} & : \text{at(grocery, S),} \\
 & \quad \quad \quad \quad \quad \quad A = \text{buy(milk)}. \\
 \text{have(milk, result(A, S))} & : \text{have(milk, S),} \\
 & \quad \quad \quad \quad \quad \quad A \neq \text{drop(milk)}. \\
 \end{align*}
 \]

 etc.
Situation Calculus Planning

- **Solution**
 - A sequence of actions P (a plan) that, when applied to the initial state, yields a situation satisfying the goal query

 $\text{at(home,G), have(milk,G), have(bread,G), have(drill,G)}$

 with

 $G = \text{result}(P,S)$

 - G could, for example, be something like

 \[
 G = \text{result(go(home), result(buy(drill),}

 \text{ result(go(hardwareStore), result(buy(bread),}

 \text{ result(buy(milk), result(go(grocery), s0))))})
 \]

- **Projection**
 - determine the effect of a sequence of actions

- **Planning**
 - find the sequence of action with the desired effect
The Frame Problem

- the action rules only specify what aspects change when an action is performed

\[
\text{have(milk, result(A,S)) :- at(grocery,S), A = buy(milk).}
\]

- we also need rules that describe what does not change!

\[
\text{at(grocery, result(A,S)) :- at(grocery,S), A = buy(milk).}
\]

If we are in a grocery store and buy milk, we remain in the grocery store.

- such frame axioms are necessary for all possible combination of state predicates and actions

- representational frame problem:
 - we do not want to represent each such possible combination

- inferential frame problem:
 - most of the work will be spent in deriving that nothing changes
SC Planning: More Problems

- **Qualification problem:**
 - difficulty in specifying all the conditions that must hold in order for an action to work
 - e.g., \texttt{go} action might fail for various reasons (locked doors, hit by a truck while crossing the street, ...)

- **Ramification problem:**
 - difficulty in specifying all of the effects that will hold after an action is taken
 - e.g., if the agent carries something, a \texttt{go} action will move that thing too...

- **Complexity:**
 - problem solving (search) is exponential in the worst case

- **Optimality:**
 - resolution theorem proving can only find a proof (plan), not necessarily a good plan
Representation Languages for Planning

- Some of the afore-mentioned problems can be solved by better knowledge representation
 - some of them will necessarily remain (e.g., qualification and ramification problems)

- Alternative approach
 - we restrict the language
 - use a special-purpose algorithm (a planner) rather than general theorem prover

- Criteria for a good representation language
 - Expressive enough to describe a wide variety of problems
 - Restrictive enough to allow efficient algorithm
 - Planning algorithm should be able to take advantage of the logical structure of the problem.
The STRIPS Language

- **STRIPS** (STanford Research Institute Problem Solver)
 - classical planning system (Fikes & Nilsson, 1971)
 - representation of states and actions quite influential
STRIPS: Representation of States

- Decompose the world in logical conditions and represent a state as a conjunction of positive literals.
 - Propositional literals
 - e.g., poor \land unknown
 - First-Order literals
 - e.g., $\text{at}(\text{plane1}, \text{melbourne}) \land \text{at}(\text{plane2}, \text{sydney})$
 - grounded (contain no variables)
 - function-free (contain no function symbols)
 - Closed world assumption
 - what is not known to be true, is assumed to be false
STRIPS: Representation of Goals

- like any other state, a goal is a conjunction of positive ground literals
 - **e.g.** `rich ∧ famous`
- may be partially instantiated:
 - **e.g.** `at(P,paris) ∧ plane(P)`
 (some plane should be in Paris)

- A **goal is satisfied** if the state contains all literals in goal
 - **e.g.** `rich ∧ famous ∧ miserable` satisfies goal
- In the case of partially instantiated first-order predicates, the state must contain some instantiation of the literals
 - **e.g.** `at(spirit_of_st_louis,paris) ∧ plane(spirit_of_st_louis)`

satisfies the goal with the substitution
\[\theta = \{ P/\text{spirit_of_st_louis}\} \]
STRIPS: Representation of Actions

Preconditions: determine the applicability of an action
- conjunction of function-free literals
- the action is applicable if the preconditions match the current state (similar to goals)

Effects: describe the state change after executing an action
- conjunction of function-free literals
- typically divided into:
 - **ADD-list:**
 - facts that become true after executing the action
 - **DELETE-list**
 - facts that become false after executing the action

```plaintext
Action( fly(P, From, To),
  PRECOND: at(P,From),
  plane(P),
  airport(From),
  airport(To)
  ADD: at(P,To)
  DELETE: at(P,From) )
```
Semantics of the STRIPS Language

- What actions are applicable in a state?
 - An action is applicable in any state that satisfies the precondition.
 - For First-Order action schema applicability involves a substitution \(\theta \) for the variables in the \texttt{PRECOND}.

- Example:

 \[
 \text{at}(p1, jfk), \text{at}(p2, sfo), \text{plane}(p1), \text{plane}(p2), \text{airport}(jfk), \text{airport}(sfo)
 \]

 satisfies

 \[
 \text{at}(P, \text{From}), \text{plane}(P), \text{airport}(\text{From}), \text{airport}(\text{To})
 \]

 with

 \[
 \theta = \{P/p1, \text{From}/jfk, \text{To}/sfo\}
 \]

 Thus the action \texttt{fly}(P, \text{From}, \text{To}) is applicable.
Semantics of the STRIPS Language

- What effects do the actions have?
 - The result of executing action a in state s is the state t
 - t is same as s except
 - Any literal P in the ADD-list is added
 - Any literal P in the DELETE-list is removed

- Example

 $\text{ADD: } \text{at}(P,To)$
 $\text{DELETE: } \text{at}(P,From)$

 with substitution $\theta = \{ P/p1, \text{From/jfk}, \text{To/sfo} \}$ results in state
 $\text{at}(p1,jfk)$, $\text{at}(p2,sfo)$, $\text{plane}(p1)$, $\text{plane}(p2)$,
 $\text{airport}(jfk)$, $\text{airport}(sfo)$, $\text{at}(p1,sfo)$,

- STRIPS assumption
 - every literal NOT in the effect remains unchanged
 - avoids representational frame problem
Example: Blocks World

- Very famous AI toy domain
- The blocks world is a micro-world that consists of
 - a table
 - a set of blocks
 - a robot hand
- Operation
 - The robot hand can grasp a single block
 - The robot hand can move over the table (with or without a block)
 - The robot hand can release a block it is holding
 - Blocks can be stacked on top of each other if the top is clear
 - Any number of blocks can be on the table
 - The hand can only hold one block
State Representation

block(a), block(b), block(c),
on(a, table), on(b, table), on(c, a),
clear(b), clear(c), handempty
Goal Representation

\[\text{on}(a, \text{table}), \text{on}(b, a), \text{on}(c, b) \]
Action Application

Action(unstack(X,Y),
PRECOND: handempty,
block(X),
block(Y),
clear(X),
on(X,Y),
ADD: holding(X),
clear(Y),
DELETE: handempty,
clear(X),
on(X,Y)
)

block(a), block(b), block(c),
on(a,table), on(b,table), on(c,a),
clear(b), clear(c), handempty,
Action Application

\[
\text{Action(unstack}(X,Y), \quad \text{PRECOND: } \text{handempty, block}(X), \text{block}(Y), \text{clear}(X), \text{on}(X,Y), \\
\quad \text{ADD: } \text{holding}(X), \text{clear}(Y), \\
\quad \text{DELETE: } \text{handempty}, \text{clear}(X), \text{on}(X,Y) \\
) \]

\[\theta = \{X/c, Y/a\}\]
Action Application

Action

\[
\text{Action(unstack}(X,Y),
\text{ PRECOND: handempty,}
\text{ block}(X),
\text{ block}(Y),
\text{ clear}(X),
\text{ on}(X,Y),
\text{ ADD: holding}(X),
\text{ clear}(Y),
\text{ DELETE: handempty,}
\text{ clear}(X),
\text{ on}(X,Y))
\]

- \(\text{block}(a), \text{block}(b), \text{block}(c), \text{on}(a, \text{table}), \text{on}(b, \text{table}), \text{clear}(b), \text{holding}(c), \text{clear}(a)\)

- \(\text{unstack}(c, a)\)
More Blocks-World Actions

Action(stack(X,Y),
PRECOND: holding(X),
 block(X),
 block(Y),
 clear(Y)
ADD: handempty,
 clear(X),
on(X,Y),
DELETE: holding(X),
 clear(Y)
)

Action(pickup(X),
PRECOND: handempty,
 block(X),
 clear(X),
on(X,table),
ADD: holding(X),
DELETE: handempty,
 clear(X),
on(X,table)
)

Action(putdown(X),
PRECOND: holding(X)
ADD: handempty,
 clear(X),
on(X,table)
DELETE: holding(X)
)
Example: Air Cargo Transport

- Initial state:

 at(c1,sfo), at(c2,jfk), at(p1,sfo),
 at(p2,sfo), cargo(c1), cargo(c2),
 plane(p1), plane(p2), airport(jfk),
 airport(sfo)

- Goal state:

 at(c1,jfk), at(c2,sfo)

Action(unload(C,P,A),
 PRECOND: in(C,P),
 at(P,A),
 cargo(C),
 plane(P),
 airport(A)
 ADD: at(C,A)
 DELETE: in(C,P))

Action(load(C,P,A),
 PRECOND: at(C,A),
 at(P,A),
 cargo(C),
 plane(P),
 airport(A)
 ADD: in(C,P)
 DELETE: at(C,A))

Action(fly(P,From,To),
 PRECOND: at(P,From),
 plane(P),
 airport(From),
 airport(To)
 ADD: at(P,To)
 DELETE: at(P,From))
Planning with State-Space Search

- **Progression planners**
 - forward state-space search
- **Regression planners**
 - backward state-space search

![Diagram](image.png)
Progression Algorithm

Formulation as state-space search problem:

- **Initial state** = initial state of the planning problem
 - Literals not appearing are false
- **Actions** = those whose preconditions are satisfied
 - Add positive effects, delete negative
- **Goal test** = does the state satisfy the goal
- **Step cost** = each action costs 1
 - could be changed if necessary

Search Algorithms

- function-free → finite → any complete graph search algorithm will yield a complete planner
- **Efficiency is a problem**
 - irrelevant action problem
 - good heuristic required for efficient search
Regression Algorithm

- In order to be able to use a backward search, we must be able to apply the STRIPS operators backwards

- **Relevant actions**
 - actions that achieve one of the subgoals
 - i.e., the subgoal is on the actions' ADD-list
 - Example:
 - Goal state: \(\text{at}(c_1,a), \text{at}(c_2,a), \ldots, \text{at}(c_{20},a)\)
 - Relevant action for first conjunct: \(\text{unload}(c_1, P, a)\)

- **Consistent actions**
 - Actions must not undo subgoals that are already achieved
 - Example:
 - \(\text{load}(c_1, P)\) will never appear in a plan for the above task because it will delete the subgoal \(\text{at}(c_1, a)\) which has been achieved with the first action

→ How can an action be applied backwards?
Inverse Action Application

General process for predecessor construction

- Given a goal description G
- Let A be an action that is relevant and consistent
- The predecessor state is determined as follows:
 - **Positive effects** of A that appear in G are **deleted**.
 - because they are assumed to have been added by A (otherwise we do not need A in the plan)
 - **Each precondition literal** of A is **added** (unless it already appears)
 - because in order to apply A, we must now make find actions that enable the preconditions.

\[
\text{New Goal} = \text{Old Goal} - \text{ADD}(A) + \text{PRECOND}(A)
\]
Inverse Action Application

- Goal:

```
on(a,table), on(b,a), on(c,b)
on(a,table), on(b,a), on(c,b)
```

```
Action( stack(X,Y),
PRECOND: holding(X),
         block(X),
         block(Y),
         clear(Y)
ADD:    handempty,
         clear(X),
on(X,Y),
DELETE: holding(X),
         clear(Y)
)
```
Inverse Action Application

- Goal:

\[
\theta = \{X/c, Y/b\}
\]

\[
\text{on}(a, \text{table}), \text{on}(b, a), \text{on}(c, b)
\]

\[
\text{holding}(c), \text{block}(c), \text{block}(b), \text{clear}(b)
\]

Action (\text{stack}(X,Y),

\text{PRECOND:} \text{holding}(X), \text{block}(X), \text{block}(Y), \text{clear}(Y)

\text{ADD:} \text{handempty}, \text{clear}(X), \text{on}(X,Y),

\text{DELETE:} \text{holding}(X), \text{clear}(Y)

)
Inverse Action Application

- New Goal:

```plaintext
on(a,table), on(b,a),
holding(c), block(c), block(b), clear(b)
```

```plaintext
Action( stack(X,Y),
PRECOND: holding(X),
block(X), block(Y), clear(Y)
ADD: handempty,
clear(X), on(X,Y),
DELETE: holding(X),
clear(Y)
)
```
Regression Algorithm

Formulation as state-space search problem:

- **Initial state** = goal state of the planning problem
 - Literals not appearing may be true or false
- **Actions** = those whose add-list satisfy the current state
 - delete positive effects, add preconditions
- **Goal test** = is the current state satisfied in the initial state of the planning problem?
- **Step cost** = each action costs 1
 - could be changed if necessary

Search algorithm

- again, any standard algorithm can perform the search
- **Main Advantage of Regression Planning**
 - only relevant actions are considered
 - often much lower branching factor than for forward search
Heuristics for State-Space Search

- Even for regression we need good heuristics
 - How many actions are needed to achieve the goal?
 - Exact solution is NP hard, find a good estimate

Two approaches to find an admissible search heuristic:

- The optimal solution to a relaxed problem
 - remove all preconditions from actions
 - almost identical to the number of open subgoals
 - remove only the delete-list and find a (minimal) set of actions that collectively achieve the goals
 - problem: finding a minimal set cover is NP-hard, and relaxing the constraint looses admissibility of heuristic

- The **subgoal independence** assumption:
 - The cost of solving a conjunction of subgoals is approximated by the sum of the costs of solving them independently
 - is only admissible if co-ordination causes additional complexity (not admissible for the `have(milk) & have(bread) plan`)
Expressiveness and Extensions

- The STRIPS language is a very simple subset of FOL
 - Important limitation: function-free literals
 - All such problems can be represented in propositional logic
 - use one proposition for each possible combination of predicate symbol and arguments
 - Function symbols lead to infinitely many states and actions
 - infinitely many arguments can be constructed with function symbols, hence propositionalization is not possible

- Various extensions have been proposed:
 - Action Description language (ADL)
 - recent extension to STRIPS language
 - allows for types, explicit negation (no CWA), relations and conditions in goals, equality predicate built in, ...
 - Planning domain definition language (PDDL)
 - standardization of various AI planning formalisms
Comparison STRIPS-ADL

<table>
<thead>
<tr>
<th>STRIPS Language</th>
<th>ADL Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only positive literals in states: (\text{Poor} \land \text{Unknown})</td>
<td>Positive and negative literals in states: (\neg \text{Rich} \land \neg \text{Famous})</td>
</tr>
<tr>
<td>Closed World Assumption: Unmentioned literals are false.</td>
<td>Open World Assumption: Unmentioned literals are unknown.</td>
</tr>
<tr>
<td>Effect (P \land \neg Q) means add (P) and delete (Q).</td>
<td>Effect (P \land \neg Q) means add (P) and (\neg Q) and delete (\neg P) and (Q).</td>
</tr>
<tr>
<td>Only ground literals in goals: (\text{Rich} \land \text{Famous})</td>
<td>Quantified variables in goals: (\exists x , A_t(P_1, x) \land A_t(P_2, x)) is the goal of having (P_1) and (P_2) in the same place.</td>
</tr>
<tr>
<td>Goals are conjunctions: (\text{Rich} \land \text{Famous})</td>
<td>Goals allow conjunction and disjunction: (\neg \text{Poor} \land (\text{Famous} \lor \text{Smart}))</td>
</tr>
<tr>
<td>Effects are conjunctions.</td>
<td>Conditional effects allowed: (\textbf{when} , P: , E) means (E) is an effect only if (P) is satisfied.</td>
</tr>
<tr>
<td>No support for equality.</td>
<td>Equality predicate ((x = y)) is built in.</td>
</tr>
<tr>
<td>No support for types.</td>
<td>Variables can have types, as in ((p: \text{Plane})).</td>
</tr>
</tbody>
</table>

Figure 11.1 Comparison of STRIPS and ADL languages for representing planning problems. In both cases, goals behave as the preconditions of an action with no parameters.