Outline

- Best-first search
 - Greedy best-first search
 - A* search
 - Heuristics
- Local search algorithms
 - Hill-climbing search
 - Beam search
 - Simulated annealing search
 - Genetic algorithms
- Constraint Satisfaction Problems
 - Constraints
 - Constraint Propagation
 - Backtracking Search
 - Local Search

Many slides based on Russell & Norvig's slides
Artificial Intelligence: A Modern Approach
Local Search Algorithms

- In many optimization problems, the path to the goal is irrelevant
 - the goal state itself is the solution

- State space:
 - set of "complete" configurations
- Goal:
 - Find a configuration that satisfies all constraints

- Examples:
 - n-queens problem, travelling salesman,

- In such cases, we can use local search algorithms
Local Search

Approach
- keep a single "current" state (or a fixed number of them)
- try to improve it by maximizing a heuristic evaluation
- using only „local“ improvements
 - i.e., only modifies the current state(s)
- paths are typically not remembered
- similar to solving a puzzle by hand
 - e.g., 8-puzzle, Rubik's cube

Advantages
- uses very little memory
- often quickly finds solutions in large or infinite state spaces

Disadvantages
- no guarantees for completeness or optimality
Optimization Problems

- **Goal:**
 - Optimize some evaluation function (objective function)
 - There is no goal state, and no path costs
 - Hence A* and other algorithms we have discussed so far are not applicable

- **Example:**
 - Darwinian evolution and survival of the fittest may be regarded as an optimization process
Example: Travelling Salesman Problem

Basic Idea:
- Start with a complete tour
- perform pairwise exchanges

variants of this approach get within 1% of an optimal solution very quickly with thousands of cities
Example: n-Queens Problem

- Basic Idea:
 - move a queen so that it reduces the number of conflicts

- almost always solves n-queens problems almost instantaneously for very large n (e.g., n = 1,000,000)
Hill-climbing search

- **Algorithm:**
 - expand the current state (generate all neighbors)
 - move to the one with the highest evaluation
 - until the evaluation goes down

```python
function Hill-Climbing(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current ← Make-Node(Initial-State[problem])
loop do
    neighbor ← a highest-valued successor of current
    if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
    current ← neighbor
end
```
Hill-climbing search (aka Greedy Local Search)

- **Algorithm:**
 - expand the current state (generate all neighbors)
 - move to the one with the highest evaluation
 - until the evaluation goes down

- **Main Problem:** Local Optima
 - the algorithm will stop as soon as it is at the top of a hill
 - but it is actually looking for a mountain peak

 "Like climbing Mount Everest in thick fog with amnesia"

- **Other problems:**
 - ridges
 - plateaux
 - shoulders
State Space Landscape

- state-space landscape
 - location: states
 - elevation: heuristic value (objective function)
- Assumption:
 - states have some sort of (linear) order
 - continuity regarding small state changes
Multi-Dimensional State-Landscape

- States may be refine in multiple ways
 → similarity along various dimensions
Example: 8-Queens Problem

- **Heuristic h:**
 - number of pairs of queens that attach each other
- **Example state:** $h = 17
Example: 8-Queens Problem

- **Heuristic** h:
 - number of pairs of queens that attack each other
- **Example state**: $h = 17$

- **Best Neighbor(s)**: $h = 12$

- **Local optimum with** $h = 1$

- no queen can move without increasing the number of attacked pairs
Randomized Hill-Climbing Variants

- **Random Restart Hill-Climbing**
 - Different initial positions result in different local optima
 - → make several iterations with different starting positions

- **Example:**
 - for 8-queens problem the probability that hill-climbing succeeds from a randomly selected starting position is ≈ 0.14
 - → a solution should be found after about $1/0.14 \approx 7$ iterations of hill-climbing

- **Stochastic Hill-Climbing**
 - select the successor node randomly
 - better nodes have a higher probability of being selected
Beam Search

- Keep track of k states rather than just one
 - k is called the beam size

- Algorithm
 - Start with k randomly generated states
 - At each iteration, all the successors of all k states are generated
 - If any one is a goal state, stop; else select the k best successors from the complete list and repeat.

Hill-Climbing Search

Beam Search ($k = 2$)
Beam Search

- Keep track of k states rather than just one
 - k is called the beam size

- Algorithm
 - Start with k randomly generated states
 - At each iteration, all the successors of all k states are generated
 - If any one is a goal state, stop; else select the k best successors from the complete list and repeat.

- Implementation
 Can be implemented similar to the Tree-Search algorithm:
 - sort the queue by the heuristic function h (as in greedy search)
 - but limit the size of the queue to k
 - and expand all nodes in queue simultaneously
Beam Search

- Keep track of k states rather than just one
 - k is called the beam size

- **Note**
 - Beam search is different from k parallel hill-climbing searches!
 - Information from different beams is combined

- **Effectiveness**
 - suffers from lack of diversity of the k states
 - e.g., if one state has better successors than all other states
 - thus it is often no more effective than hill-climbing

- **Stochastic Beam Search**
 - chooses k successors at random
 - better nodes have a higher probability of being selected
Simulated Annealing Search

- combination of hill-climbing and random walk

Idea:
- escape local maxima by allowing some "bad" moves
- but gradually decrease their frequency (the *temperature*)

Effectiveness:
- it can be proven that if the temperature is lowered slowly enough, the probability of converging to a global optimum approaches 1
- Widely used in VLSI layout, airline scheduling, etc

Note:
- Annealing *in metallurgy and materials science, is a heat treatment wherein the microstructure of a material is altered, causing changes in its properties such as strength and hardness. It is a process that produces equilibrium conditions by heating and maintaining at a suitable temperature, and then cooling very slowly.*
Simulated Annealing Search

- combination of hill-climbing and random walk

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
    inputs: problem, a problem
             schedule, a mapping from time to "temperature"
    local variables: current, a node
                     next, a node
                     T, a "temperature" controlling prob. of downward steps
    current ← MAKE-NODE(INITIAL-STATE[problem])
    for t ← 1 to ∞ do
        T ← schedule[t]
        if T = 0 then return current
        next ← a randomly selected successor of current
        ΔE ← VALUE[next] − VALUE[current]
        if ΔE > 0 then current ← next
        else current ← next only with probability \( e^{\Delta E/T} \)
```
Genetic Algorithms

- Same idea as in Stochastic Beam Search
 - but uses „sexual“ reproduction (new nodes have two parents)
- Basic Algorithm:
 - Start with k randomly generated states (population)
 - A state is represented as a string over a finite alphabet
 - often a string of 0s and 1s
 - Evaluation function (fitness function)
 - Produce the next generation by selection, cross-over, and mutation
Cross-Over

- Modelled after cross-over of DNA
 - take two parent strings
 - cut them at cross-over point
 - recombine the pieces

- it is helpful if the substrings are meaningful subconcepts
Genetic Algorithm

function GENETIC_ALGORITHM(population, FITNESS-FN) return an individual

input: population, a set of individuals
FITNESS-FN, a function which determines the quality of the individual

repeat

new_population ← empty set

loop for i from 1 to SIZE(population) do

x ← RANDOM_SELECTION(population, FITNESS_FN)
y ← RANDOM_SELECTION(population, FITNESS_FN)
child ← REPRODUCE(x,y)

if (small random probability) then child ← MUTATE(child)

add child to new_population

population ← new_population

until some individual is fit enough or enough time has elapsed

return the best individual in population, according to FITNESS_FN
Genetic Algorithms

- Evaluation
 - attractive and popular
 - easy to implement general optimization algorithm
 - easy to explain to laymen (boss)
 - perform well
 - unclear under which conditions they work well
 - other randomized algorithms perform equally well (or better)

- Numerous applications
 - optimization problems
 - circuit layout
 - job-shop scheduling
 - game playing
 - checkers program Blondie24 (David Fogel)
 - nice and easy read, but shooting a bit over target in its claims...
Genetic Programming

- popularized by John R. Koza

> Genetic programming is an automated method for creating a working computer program from a high-level problem statement of a problem. It starts from a high-level statement of “what needs to be done” and automatically creates a computer program to solve the problem.

- applies Genetic Algorithms to program trees
 - Mutation and Cross-over adapted to tree structures
 - special operations like
 - inventing/deleting a subroutine
 - deleting/adding an argument,
 - etc.
- Several successful applications
 - 36 cases where it achieve performance competitive to humans
Random Initialization of Population

Mutation

Cross-Over

Create a Subroutine

Delete a Subroutine

Duplicate an Argument

Delete an Argument

Create a Subroutine by Duplication

Local Search in Continuous Spaces

In many real-world problems the state space is continuous

- **Discretize the state space**
 - e.g., assume only n different positions of a steering wheel or a gas pedal

- **Gradient Descent (Ascent)**
 - hill-climbing using the gradient of the objective function f
 - f needs to be differentiable

- **Empirical Gradient**
 - empirically evaluate the response of f to small state changes
 - same as hill-climbing in a discretized space