Temporal Difference Learning & Policy Iteration

Advanced Topics in Reinforcement Learning Seminar WS 15/16

by Tobias Joppen

Overview

- Introduction
 - Reinforcement Learning Model
 - Learning procedure
 - Markov Property
 - Value Function
- Policy Iteration
- Temporal Difference Learning
 - Idea
 - Update Rule
- Application

Introduction (Reinforcement Learning)

- Reinforcement learning ⊆ machine learning
- Learn by reinforcements (good / bad moves)
- Want: a policy how to behave in different situations
- Mostly sequential problems

state $\xrightarrow{\text{action}}$ state $\xrightarrow{\text{action}}$ state $\xrightarrow{\text{action}}$ state $\xrightarrow{\text{action}}$ ($\xrightarrow{\text{action}}$ final state)

Delayed Rewards

"An agent is connected to its environment via perception and action" - Leslie Pack Kaelbling

Formal model consists of:

- A discrete set of states *S*
- A discrete set of actions A
- A set of scalar reinforcement signals (Rewards)

Main Goal:

Find a policy $\pi : S \to A$, mapping states to actions, that maximizes some long-run measure of reinforcement. ($\pi(s)$ is the chosen action in state s)

Main procedure

Agent is in state s_1 and can choose from actions $\{a_1, \dots, a_n\}$.

- Agent chooses action a_i .
- Agent gets a reinforcement (reward) r_1 and is given its new state s_2 and a new set of possible actions.
- This loops until a given final state is reached or the procedure gets canceled.

Markov Decision Process

In general: Environment non-deterministic

(Same action in same state can lead to different reinforcements and states) But: The probability for a outcome is fixed (**Static environment**).

The markov property:

The outcome of an action in a given state does not depend on anything but the state/action pair. (Does not depend on earlier actions or states)

Markov Decision Process

State transition function $T: S \times A \rightarrow \Pi(S)$

members of $\Pi(S)$ are probability distribution over the set S

for each state there is a probability that a pair (s, a) leads into this state

We write T(s, a, s') for the probability of making a transition from state s to state s' using action a.

Measurement of performing good

- the learner needs information about the quality of a state
- want to find optimal policy π^*

A value function V represents the expected future reward for a current state, if the agent follows policy π :

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V^{\pi}(s')$$

Optimality

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V^{\pi}(s')$$

The optimal policy is the policy with the highest value for all states s:

 $\pi^* = \arg\max_{\pi} V^{\pi}(s)$

$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$
$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	

Optimal value function $V^*(s) \rightarrow$ optimal policy:

$$\pi^{*}(s) = \arg \max_{a} [R(s, a) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V^{*}(s')]$$

Policy Improvement

The task: improve a policy π , such that it performs better.

That means, it has a bigger cummulated expected reward afterwards (for each state s).

If it is $V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V^{\pi}(s')$ $< R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V^{\pi}(s')$

than it is better to choose action *a* instead of $\pi(s)$ in the current state s_t . So one can improve the policy by choosing action *a*' instead of a_t in state s_t .

Policy Iteration

If this improvement is done multiple times with all possible states, this is called policy iteration.

One iteration consists of:

1. Calculating the value function of the current policy π for each state *s*

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V^{\pi}(s')$$

2. Improve the policy at each state

$$\pi_0 \xrightarrow{E} V^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} V^{\pi_1} \xrightarrow{I} \pi_1 \xrightarrow{E} V^{\pi_2} \xrightarrow{I} \pi_2 \xrightarrow{E} \dots \xrightarrow{I} V^*$$

Policy Iteration

Why does it work (why does it take multiple iterations)?

> After 1 Iteration, at least this is optimal:

Policy Iteration

Why does it work (why does it take multiple iterations)?

> After 1 Iteration, at least this is optimal:

This works, but

- Needs many policy evaluations (What is $V^{\pi}(s)$?)
- Need a model of the environment (need to know R and T to get $V^{\pi}(s)$)
- May have large trajectories (expensive computation, memory usage)

?

03.11.2015 | Fachbereich Informatik | Knowledge Engineering Group | Prof. J. Fürnkranz | 14

TECHNISCHE UNIVERSITÄT DARMSTADT

How to learn $V^{\pi}(s)$ without knowing *R* and *T* ?

- Introduction
 - Reinforcement Learning Model
 - Learning procedure
 - Markov Property
 - Value Function
- Policy Iteration
- Temporal Difference Learning
 - Idea
 - Update Rule

How to learn $V^{\pi}(s)$ without knowing *R* and *T* ?

- Introduction
 - Reinforcement Learning Model
 - Learning procedure
 - Markov Property
 - Value Function
- Policy Iteration
- Temporal Difference Learning
 - Idea
 - Update Rule

Temporal difference learning

- Following a policy π gives experience
- Use this to update estimate V of V^{π}
- Begin with *incorrect* estimate V the true values V^π are unknown (otherwise there is nothing you need to learn)
- Learn correct value function

(using a good policy)

Temporal difference learning

Recall the value function:

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} T(s, \pi(s), s') V^{\pi}(s')$$

For deterministic environments, the value function is easier!

Lets take a look at this …

Since T(s, a, s') is 0 for $a \neq \pi(s)$ and 1 otherwise,

in deterministic environment it is:

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma V^{\pi}(\delta(s, \pi(s)))$$

where $\delta: S \times A \rightarrow S$ is the transition function

Temporal difference learning

Example (non-deterministic environment):

- The agent is in state s at time step t (say s_t)
- $V(s_t)$ is the expected future reward
- Agent performs action $a := \pi(s_t)$
- Leads to state s_{t+1} with reinforcement R(s, a)
- Now we have a new expected future reward: $V(s_{t+1})$
- Is $V(s_t) = R(s, a) + \gamma V(s_{t+1})$?
 - For V^{π} it's true: $V^{\pi}(s) = R(s, a) + \gamma V^{\pi}(s_{t+1})$

Is $R(s, a) + \gamma V(s_{t+1})$ a better value for $V(s_t)$?

Should the old value be replaced by the new one?

Is $R(s, a) + \gamma V(s_{t+1})$ a better value for $V(s_t)$?

Should the old value be replaced by the new one?

➢ No!

- Because the term $V(s_{t+1})$ is just as wrong as $V(s_t)$ was
- Because the learner would forget everything he learned before about $V(s_t)$

Is $R(s, a) + \gamma V(s_{t+1})$ a better value for $V(s_t)$?

Should the old value be replaced by the new one?

> No!

- Because the term $V(s_{t+1})$ is just as wrong as $V(s_t)$ was
- Because the learner would forget everything he learned before about $V(s_t)$
- > But $R(s, a) + \gamma V(s_{t+1})$ has a bit of truth in it:
 - *R*(*s*, *a*) is the correct reinforcement value
 - $V(s_{t+1})$ hopefully converges to $V^{\pi}(s_{t+1})$

So both $V(s_t)$ and $R(s, a) + \gamma V(s_{t+1})$ have some value:

 $V(s_t)$ contains old knowledge

 $R(s, a) + \gamma V(s_{t+1})$ contains new experience

So both $V(s_t)$ and $R(s, a) + \gamma V(s_{t+1})$ have some value:

 $V(s_t)$ contains old knowledge

 $R(s, a) + \gamma V(s_{t+1})$ contains new experience

A proper update for a new value for $V(s_t)$ is a mixture of both!

So both $V(s_t)$ and $R(s, a) + \gamma V(s_{t+1})$ have some value:

 $V(s_t)$ contains old knowledge

 $R(s, a) + \gamma V(s_{t+1})$ contains new experience

A proper update for a new value for $V(s_t)$ is a mixture of both!

A often used update-rule, known as TD(0), is: $V(s_t) \leftarrow V(s_t) + \alpha [R(s, a) + \gamma V(s_{t+1}) - V(s_t)]$

So both $V(s_t)$ and $R(s, a) + \gamma V(s_{t+1})$ have some value:

 $V(s_t)$ contains old knowledge

 $R(s, a) + \gamma V(s_{t+1})$ contains new experience

A proper update for a new value for $V(s_t)$ is a mixture of both!

A often used update-rule, known as TD(0), is: $V(s_t) \leftarrow V(s_t) + \alpha [R(s, a) + \gamma V(s_{t+1}) - V(s_t)]$

Using TD(0) the real V^{π} will be learned eventually!

(using good values for γ , α and running long enough)

03.11.2015 | Fachbereich Informatik | Knowledge Engineering Group | Prof. J. Fürnkranz | 32

Application

This only learnes V^{π} , not the best policy π^* !

Main Goal: Find a policy $\pi : S \rightarrow A$, mapping states to actions, that maximizes some long-run measure of reinforcement.

To achieve this, one has to:

- Learn the value of $S \times A$, not only S (V vs. Q-Function)
- Don't follow a single policy, but get actions using an *explorator*
- At the beginning: explore the state-space
- To the end: exploit the gathered knowledge

The end

Thanks for your attention!

Any questions?

03.11.2015 | Fachbereich Informatik | Knowledge Engineering Group | Prof. J. Fürnkranz | 34

References

Sutton, Richard S., and Andrew G. Barto. *Introduction to reinforcement learning*. Vol. 135. Cambridge: MIT Press, 1998.

DIETTERICH, ANDREW G. BARTO THOMAS G. "2 Reinforcement Learning and Its Relationship to Supervised Learning." *Handbook of learning and approximate dynamic programming* 2 (2004): 47.

Kunz, Florian. "An Introduction to Temporal Difference Learning."

Sutton, Richard S. "Learning to predict by the methods of temporal differences." *Machine learning* 3.1 (1988): 9-44.

Kaelbling, Leslie Pack, Michael L. Littman, and Andrew W. Moore. "Reinforcement learning: A survey." *Journal of artificial intelligence research*(1996): 237-285.

